Suppr超能文献

基于核苷酸组成的增强型腺苷到次黄苷 RNA 编辑位点预测(EPAI-NC)

EPAI-NC: Enhanced prediction of adenosine to inosine RNA editing sites using nucleotide compositions.

机构信息

Department of Computer Science and Engineering, United International University, Plot 2, United City, Madani Avenue, Satarkul, Badda, Dhaka, 1212, Bangladesh.

出版信息

Anal Biochem. 2019 Mar 15;569:16-21. doi: 10.1016/j.ab.2019.01.002. Epub 2019 Jan 18.

Abstract

RNA editing process like Adenosine to Intosine (A-to-I) often influences basic functions like splicing stability and most importantly the translation. Thus knowledge about editing sites is of great importance in molecular biology. With the growth of known editing sites, machine learning or data centric approaches are now being applied to solve this problem of prediction of RNA editing sites. In this paper, we propose EPAI-NC, a novel method for prediction of RNA editing sites. We have used l-mer composition and n-gapped l-mer composition as features and used Pearson Correlation Coefficient to select features according to Pareto Principle. Locally deep support vector machines were used to train the classification model of EPAI-NC. EPAI-NC significantly enhances the prediction accuracy compared to the previous state-of-the-art methods when tested on standard benchmark and independent dataset.

摘要

RNA 编辑过程,如腺苷酸到肌苷酸(A 到 I),通常会影响剪接稳定性等基本功能,而最重要的是翻译。因此,编辑位点的知识在分子生物学中非常重要。随着已知编辑位点的增加,机器学习或数据为中心的方法现在被应用于解决 RNA 编辑位点预测的问题。在本文中,我们提出了 EPAI-NC,这是一种用于预测 RNA 编辑位点的新方法。我们使用 l-mer 组成和 n-缺口 l-mer 组成作为特征,并根据帕累托原则使用皮尔逊相关系数来选择特征。局部深度支持向量机用于训练 EPAI-NC 的分类模型。当在标准基准和独立数据集上进行测试时,与之前的最先进方法相比,EAPINC 显著提高了预测准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验