Department of Computer Science and Engineering, United International University, Plot 2, United City, Madani Avenue, Satarkul, Badda, Dhaka, 1212, Bangladesh.
Anal Biochem. 2019 Mar 15;569:16-21. doi: 10.1016/j.ab.2019.01.002. Epub 2019 Jan 18.
RNA editing process like Adenosine to Intosine (A-to-I) often influences basic functions like splicing stability and most importantly the translation. Thus knowledge about editing sites is of great importance in molecular biology. With the growth of known editing sites, machine learning or data centric approaches are now being applied to solve this problem of prediction of RNA editing sites. In this paper, we propose EPAI-NC, a novel method for prediction of RNA editing sites. We have used l-mer composition and n-gapped l-mer composition as features and used Pearson Correlation Coefficient to select features according to Pareto Principle. Locally deep support vector machines were used to train the classification model of EPAI-NC. EPAI-NC significantly enhances the prediction accuracy compared to the previous state-of-the-art methods when tested on standard benchmark and independent dataset.
RNA 编辑过程,如腺苷酸到肌苷酸(A 到 I),通常会影响剪接稳定性等基本功能,而最重要的是翻译。因此,编辑位点的知识在分子生物学中非常重要。随着已知编辑位点的增加,机器学习或数据为中心的方法现在被应用于解决 RNA 编辑位点预测的问题。在本文中,我们提出了 EPAI-NC,这是一种用于预测 RNA 编辑位点的新方法。我们使用 l-mer 组成和 n-缺口 l-mer 组成作为特征,并根据帕累托原则使用皮尔逊相关系数来选择特征。局部深度支持向量机用于训练 EPAI-NC 的分类模型。当在标准基准和独立数据集上进行测试时,与之前的最先进方法相比,EAPINC 显著提高了预测准确性。