Suppr超能文献

PLIT:一种用于鉴定植物转录组数据中长非编码 RNA 的无比对计算工具。

PLIT: An alignment-free computational tool for identification of long non-coding RNAs in plant transcriptomic datasets.

机构信息

School of Computing, Electronics and Mathematics, 1 Gulson Road Coventry University, Coventry, Warwickshire, CV1 2JH, United Kingdom.

School of Computing, Electronics and Mathematics, 1 Gulson Road Coventry University, Coventry, Warwickshire, CV1 2JH, United Kingdom.

出版信息

Comput Biol Med. 2019 Feb;105:169-181. doi: 10.1016/j.compbiomed.2018.12.014. Epub 2019 Jan 4.

Abstract

Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs which play a significant role in several biological processes. RNA-seq based transcriptome sequencing has been extensively used for identification of lncRNAs. However, accurate identification of lncRNAs in RNA-seq datasets is crucial for exploring their characteristic functions in the genome as most coding potential computation (CPC) tools fail to accurately identify them in transcriptomic data. Well-known CPC tools such as CPC2, lncScore, CPAT are primarily designed for prediction of lncRNAs based on the GENCODE, NONCODE and CANTATAdb databases. The prediction accuracy of these tools often drops when tested on transcriptomic datasets. This leads to higher false positive results and inaccuracy in the function annotation process. In this study, we present a novel tool, PLIT, for the identification of lncRNAs in plants RNA-seq datasets. PLIT implements a feature selection method based on L regularization and iterative Random Forests (iRF) classification for selection of optimal features. Based on sequence and codon-bias features, it classifies the RNA-seq derived FASTA sequences into coding or long non-coding transcripts. Using L regularization, 31 optimal features were obtained based on lncRNA and protein-coding transcripts from 8 plant species. The performance of the tool was evaluated on 7 plant RNA-seq datasets using 10-fold cross-validation. The analysis exhibited superior accuracy when evaluated against currently available state-of-the-art CPC tools.

摘要

长非编码 RNA(lncRNA)是一类非编码 RNA,在多种生物过程中发挥重要作用。基于 RNA-seq 的转录组测序已广泛用于 lncRNA 的鉴定。然而,在 RNA-seq 数据集中准确识别 lncRNA 对于探索其在基因组中的特征功能至关重要,因为大多数编码潜能计算(CPC)工具无法在转录组数据中准确识别它们。CPC2、lncScore、CPAT 等知名 CPC 工具主要基于 GENCODE、NONCODE 和 CANTATAdb 数据库设计,用于预测 lncRNA。当在转录组数据集上进行测试时,这些工具的预测准确性往往会下降,导致假阳性结果更高,功能注释过程不准确。在这项研究中,我们提出了一种新的工具 PLIT,用于鉴定植物 RNA-seq 数据集中的 lncRNA。PLIT 实现了一种基于 L 正则化和迭代随机森林(iRF)分类的特征选择方法,用于选择最佳特征。基于序列和密码子偏倚特征,它将 RNA-seq 衍生的 FASTA 序列分类为编码或长非编码转录物。通过 L 正则化,从 8 种植物的 lncRNA 和蛋白质编码转录本中获得了 31 个最优特征。该工具的性能在 7 个植物 RNA-seq 数据集上通过 10 倍交叉验证进行了评估。与现有的最先进的 CPC 工具相比,该分析表现出了更高的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验