Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Bulfinch 165, Boston, MA 02114, United States.
Research Information Systems and Computing, Partners Healthcare, United States.
Semin Arthritis Rheum. 2019 Aug;49(1):84-90. doi: 10.1016/j.semarthrit.2019.01.002. Epub 2019 Jan 4.
To utilize electronic health records (EHRs) to study SLE, algorithms are needed to accurately identify these patients. We used machine learning to generate data-driven SLE EHR algorithms and assessed performance of existing rule-based algorithms.
We randomly selected subjects with ≥ 1 SLE ICD-9/10 codes from our EHR and identified gold standard definite and probable SLE cases by chart review, based on 1997 ACR or 2012 SLICC Classification Criteria. From a training set, we extracted coded and narrative concepts using natural language processing and generated algorithms using penalized logistic regression to classify definite or definite/probable SLE. We assessed predictive characteristics in internal and external cohort validations. We also tested performance characteristics of published rule-based algorithms with pre-specified permutations of ICD-9 codes, laboratory tests and medications in our EHR.
At a specificity of 97%, our machine learning coded algorithm for definite SLE had 90% positive predictive value (PPV) and 64% sensitivity and for definite/probable SLE, 92% PPV and 47% sensitivity. In the external validation, at 97% specificity, the definite/probable algorithm had 94% PPV and 60% sensitivity. Adding NLP concepts did not improve performance metrics. The PPVs of published rule-based algorithms ranged from 45-79% in our EHR.
Our machine learning SLE algorithms performed well in internal and external validation. Rule-based SLE algorithms did not transport as well to our EHR. Unique EHR characteristics, clinical practices and research goals regarding the desired sensitivity and specificity of the case definition must be considered when applying algorithms to identify SLE patients.
利用电子健康记录(EHR)研究系统性红斑狼疮(SLE),需要算法来准确识别这些患者。我们使用机器学习生成数据驱动的 SLE EHR 算法,并评估现有的基于规则的算法的性能。
我们从 EHR 中随机选择具有≥1 个 SLE ICD-9/10 代码的受试者,并通过病历回顾确定金标准明确和可能的 SLE 病例,依据 1997 年 ACR 或 2012 年 SLICC 分类标准。从训练集中,我们使用自然语言处理提取编码和叙述概念,并使用惩罚逻辑回归生成算法,以分类明确或明确/可能的 SLE。我们在内部和外部队列验证中评估预测特征。我们还测试了在我们的 EHR 中使用预定义的 ICD-9 代码、实验室检查和药物排列的发表的基于规则的算法的性能特征。
在特异性为 97%时,我们用于明确 SLE 的机器学习编码算法的阳性预测值(PPV)为 90%,敏感性为 64%,用于明确/可能 SLE 的算法的 PPV 为 92%,敏感性为 47%。在外部验证中,特异性为 97%时,明确/可能的算法的 PPV 为 94%,敏感性为 60%。添加 NLP 概念并未提高性能指标。发表的基于规则的算法的 PPV 在我们的 EHR 中范围为 45-79%。
我们的机器学习 SLE 算法在内部和外部验证中表现良好。基于规则的 SLE 算法在我们的 EHR 中不能很好地传输。在应用算法识别 SLE 患者时,必须考虑 EHR 的独特特征、临床实践和研究目标,以及所需病例定义的敏感性和特异性。