Suppr超能文献

开发能够准确识别系统性红斑狼疮患者的电子健康记录算法。

Developing Electronic Health Record Algorithms That Accurately Identify Patients With Systemic Lupus Erythematosus.

作者信息

Barnado April, Casey Carolyn, Carroll Robert J, Wheless Lee, Denny Joshua C, Crofford Leslie J

机构信息

Vanderbilt University Medical Center, Nashville, Tennessee.

出版信息

Arthritis Care Res (Hoboken). 2017 May;69(5):687-693. doi: 10.1002/acr.22989. Epub 2017 Apr 10.

Abstract

OBJECTIVE

To study systemic lupus erythematosus (SLE) in the electronic health record (EHR), we must accurately identify patients with SLE. Our objective was to develop and validate novel EHR algorithms that use International Classification of Diseases, Ninth Revision (ICD-9), Clinical Modification codes, laboratory testing, and medications to identify SLE patients.

METHODS

We used Vanderbilt's Synthetic Derivative, a de-identified version of the EHR, with 2.5 million subjects. We selected all individuals with at least 1 SLE ICD-9 code (710.0), yielding 5,959 individuals. To create a training set, 200 subjects were randomly selected for chart review. A subject was defined as a case if diagnosed with SLE by a rheumatologist, nephrologist, or dermatologist. Positive predictive values (PPVs) and sensitivity were calculated for combinations of code counts of the SLE ICD-9 code, a positive antinuclear antibody (ANA), ever use of medications, and a keyword of "lupus" in the problem list. The algorithms with the highest PPV were each internally validated using a random set of 100 individuals from the remaining 5,759 subjects.

RESULTS

The algorithm with the highest PPV at 95% in the training set and 91% in the validation set was 3 or more counts of the SLE ICD-9 code, ANA positive (≥1:40), and ever use of both disease-modifying antirheumatic drugs and steroids, while excluding individuals with systemic sclerosis and dermatomyositis ICD-9 codes.

CONCLUSION

We developed and validated the first EHR algorithm that incorporates laboratory values and medications with the SLE ICD-9 code to identify patients with SLE accurately.

摘要

目的

为了在电子健康记录(EHR)中研究系统性红斑狼疮(SLE),我们必须准确识别SLE患者。我们的目标是开发并验证使用国际疾病分类第九版(ICD - 9)临床修订版编码、实验室检测和药物来识别SLE患者的新型EHR算法。

方法

我们使用了范德堡大学的综合衍生数据,这是EHR的一个去识别版本,包含250万受试者。我们选择了所有至少有1个SLE的ICD - 9编码(710.0)的个体,共5959人。为创建一个训练集,随机选择200名受试者进行病历审查。如果经风湿病学家、肾病学家或皮肤科医生诊断为SLE,则该受试者被定义为病例。计算SLE的ICD - 9编码计数、抗核抗体(ANA)阳性、曾使用药物以及问题列表中“狼疮”关键词的组合的阳性预测值(PPV)和敏感性。对PPV最高的算法,使用其余5759名受试者中的100名随机样本进行内部验证。

结果

在训练集中PPV最高为95%、验证集中为91%的算法是:SLE的ICD - 9编码计数为3次或更多、ANA阳性(≥1:40)、曾同时使用改善病情抗风湿药物和类固醇,同时排除有系统性硬化症和皮肌炎ICD - 编码的个体。

结论

我们开发并验证了首个将实验室值和药物与SLE的ICD - 9编码相结合以准确识别SLE患者的EHR算法。

相似文献

1
Developing Electronic Health Record Algorithms That Accurately Identify Patients With Systemic Lupus Erythematosus.
Arthritis Care Res (Hoboken). 2017 May;69(5):687-693. doi: 10.1002/acr.22989. Epub 2017 Apr 10.
3
Developing and Validating Methods to Assemble Systemic Lupus Erythematosus Births in the Electronic Health Record.
Arthritis Care Res (Hoboken). 2022 May;74(5):849-857. doi: 10.1002/acr.24522. Epub 2022 Mar 16.
4
Developing electronic health record algorithms that accurately identify patients with juvenile idiopathic arthritis.
Semin Arthritis Rheum. 2023 Apr;59:152167. doi: 10.1016/j.semarthrit.2023.152167. Epub 2023 Jan 18.
8
Case definitions in Swedish register data to identify systemic lupus erythematosus.
BMJ Open. 2016 Jan 4;6(1):e007769. doi: 10.1136/bmjopen-2015-007769.

引用本文的文献

4
Treatment trends of systemic lupus erythematosus from 2007 to 2023 in the USA.
Lupus Sci Med. 2024 Dec 9;11(2):e001317. doi: 10.1136/lupus-2024-001317.
6
Comparison of Diagnosis Codes to Clinical Notes in Classifying Patients with Diabetic Retinopathy.
Ophthalmol Sci. 2024 Jun 14;4(6):100564. doi: 10.1016/j.xops.2024.100564. eCollection 2024 Nov-Dec.
9
and the risk of adverse renal outcomes in patients of African ancestry with systemic lupus erythematosus.
Lupus. 2023 May;32(6):763-770. doi: 10.1177/09612033231172660. Epub 2023 Apr 27.

本文引用的文献

1
National Lupus Hospitalization Trends Reveal Rising Rates of Herpes Zoster and Declines in Pneumocystis Pneumonia.
PLoS One. 2016 Jan 5;11(1):e0144918. doi: 10.1371/journal.pone.0144918. eCollection 2016.
2
Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance.
J Am Med Inform Assoc. 2016 Apr;23(e1):e20-7. doi: 10.1093/jamia/ocv130. Epub 2015 Sep 2.
6
Electronic health records-driven phenotyping: challenges, recent advances, and perspectives.
J Am Med Inform Assoc. 2013 Dec;20(e2):e206-11. doi: 10.1136/amiajnl-2013-002428.
10
Portability of an algorithm to identify rheumatoid arthritis in electronic health records.
J Am Med Inform Assoc. 2012 Jun;19(e1):e162-9. doi: 10.1136/amiajnl-2011-000583. Epub 2012 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验