Barnado April, Casey Carolyn, Carroll Robert J, Wheless Lee, Denny Joshua C, Crofford Leslie J
Vanderbilt University Medical Center, Nashville, Tennessee.
Arthritis Care Res (Hoboken). 2017 May;69(5):687-693. doi: 10.1002/acr.22989. Epub 2017 Apr 10.
To study systemic lupus erythematosus (SLE) in the electronic health record (EHR), we must accurately identify patients with SLE. Our objective was to develop and validate novel EHR algorithms that use International Classification of Diseases, Ninth Revision (ICD-9), Clinical Modification codes, laboratory testing, and medications to identify SLE patients.
We used Vanderbilt's Synthetic Derivative, a de-identified version of the EHR, with 2.5 million subjects. We selected all individuals with at least 1 SLE ICD-9 code (710.0), yielding 5,959 individuals. To create a training set, 200 subjects were randomly selected for chart review. A subject was defined as a case if diagnosed with SLE by a rheumatologist, nephrologist, or dermatologist. Positive predictive values (PPVs) and sensitivity were calculated for combinations of code counts of the SLE ICD-9 code, a positive antinuclear antibody (ANA), ever use of medications, and a keyword of "lupus" in the problem list. The algorithms with the highest PPV were each internally validated using a random set of 100 individuals from the remaining 5,759 subjects.
The algorithm with the highest PPV at 95% in the training set and 91% in the validation set was 3 or more counts of the SLE ICD-9 code, ANA positive (≥1:40), and ever use of both disease-modifying antirheumatic drugs and steroids, while excluding individuals with systemic sclerosis and dermatomyositis ICD-9 codes.
We developed and validated the first EHR algorithm that incorporates laboratory values and medications with the SLE ICD-9 code to identify patients with SLE accurately.
为了在电子健康记录(EHR)中研究系统性红斑狼疮(SLE),我们必须准确识别SLE患者。我们的目标是开发并验证使用国际疾病分类第九版(ICD - 9)临床修订版编码、实验室检测和药物来识别SLE患者的新型EHR算法。
我们使用了范德堡大学的综合衍生数据,这是EHR的一个去识别版本,包含250万受试者。我们选择了所有至少有1个SLE的ICD - 9编码(710.0)的个体,共5959人。为创建一个训练集,随机选择200名受试者进行病历审查。如果经风湿病学家、肾病学家或皮肤科医生诊断为SLE,则该受试者被定义为病例。计算SLE的ICD - 9编码计数、抗核抗体(ANA)阳性、曾使用药物以及问题列表中“狼疮”关键词的组合的阳性预测值(PPV)和敏感性。对PPV最高的算法,使用其余5759名受试者中的100名随机样本进行内部验证。
在训练集中PPV最高为95%、验证集中为91%的算法是:SLE的ICD - 9编码计数为3次或更多、ANA阳性(≥1:40)、曾同时使用改善病情抗风湿药物和类固醇,同时排除有系统性硬化症和皮肌炎ICD - 编码的个体。
我们开发并验证了首个将实验室值和药物与SLE的ICD - 9编码相结合以准确识别SLE患者的EHR算法。