State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.
University of Chinese Academy of Sciences, 100049, Beijing, China.
Angew Chem Int Ed Engl. 2019 Apr 23;58(18):5872-5876. doi: 10.1002/anie.201814575. Epub 2019 Feb 6.
In diverse biological systems, the oxidation of tyrosine to melanin or dityrosine is crucial for the formation of crosslinked proteins and thus for the realization of their structural, biological, and photoactive functionalities; however, the predominant factor in determining the pathways of this chemical evolution has not been revealed. Herein, we demonstrate for tyrosine-containing amino acid derivatives, peptides, and proteins that the selective oxidation of tyrosine to produce melanin or dityrosine can be readily realized by manipulating the oxygen concentration in the reaction system. This oxygen-dependent pathway selection reflects the selective chemical evolution of tyrosine to dityrosine and melanin in anaerobic and aerobic microorganisms, respectively. The resulting melanin- and dityrosine-containing nanomaterials reproduce key functions of their natural counterparts with respect to their photothermal and photoluminescent characteristics, respectively. This work reveals the plausible role of oxygen in the chemical evolution of tyrosine derivatives and provides a versatile strategy for the rational design of tyrosine-based multifunctional biomaterials.
在不同的生物系统中,酪氨酸的氧化为黑色素或二酪氨酸对于交联蛋白质的形成至关重要,从而实现其结构、生物和光活性功能;然而,决定这一化学演变途径的主要因素尚未被揭示。本文中,我们证明了对于含有酪氨酸的氨基酸衍生物、肽和蛋白质,通过操纵反应体系中的氧浓度,可以很容易地实现酪氨酸选择性氧化生成黑色素或二酪氨酸。这种氧依赖性的途径选择反映了酪氨酸在厌氧和需氧微生物中分别向二酪氨酸和黑色素的选择性化学进化。所得的含有黑色素和二酪氨酸的纳米材料在光热和光致发光特性方面分别再现了天然对应物的关键功能。这项工作揭示了氧气在酪氨酸衍生物化学演变中的可能作用,并为基于酪氨酸的多功能生物材料的合理设计提供了一种通用策略。