Department of Energy and Technology, Swedish University of Agricultural Sciences (SLU), Box 7032, SE 750 07, Uppsala, Sweden.
Centre for Water and Environment, Royal Scientific Society, Box 1438, 11941, Amman, Jordan.
Environ Pollut. 2019 Apr;247:155-164. doi: 10.1016/j.envpol.2019.01.032. Epub 2019 Jan 14.
This study investigated the potential of biochar filters as a replacement for, or complement to, sand filters for removal of per- and polyfluoroalkyl substances (PFASs) from wastewater in on-site wastewater treatment systems (OWTSs). Concentrations and removal of nine perfluoroalkyl carboxylates (PFCAs; C) and three perfluoroalkane sulfonates (PFSAs; C, , ) and one perfluorooctanesulfonamide (FOSA; C) were investigated over 22 weeks in four treatments with column filters: biochar (BC) without biofilm (BC-no-biofilm), biochar with active biofilm (BC-active-biofilm), biochar with inactive biofilm (BC-inactive-biofilm) and sand with active biofilm (Sand-active-biofilm). The filters were operated under hydraulic loading (50 L m day) to mimic the loading rate in on-site filtration beds. The initial concentrations of the ΣPFASs in the influent were in the range of 1500-4900 ng L. In BC-no-biofilm, the removal efficiency (20-60%) and adsorption capacity (0-88 ng ΣPFASs g BC) of short-chain PFCAs (C) and PFSA (C) was low, whereas the removal efficiency (90-99%) and the adsorption capacity (73-168 ng g) was high for C-C PFCAs, C, C PFSAs and FOSA. The relative removal was generally lower for C PFCAs and C, C, C PFSAs using BC-active-biofilm and BC-inactive-biofilm compared with BC-no-biofilm. This can be explained by the presence of biofilm and solids in BC-active-biofilm and the presence of wastewater solids in BC-inactive-biofilm, which decreased the availability and number of adsorption sites for PFASs compared with BC-no-biofilm. On the other hand, inactivation of the biofilm resulted in lower removal efficiencies for C PFCAs, C, C, C PFSAs and FOSA, probably because the biofilm degraded organic matter and thus increased the availability and number of adsorption sites compared with BC-inactive-biofilm. Sand-active-biofilm showed poor removal (0-70%) for all PFASs except FOSA (90%) and its adsorption capacity was low (0.0-7.5 ng g). In general, for all biochar treatments, shorter-chain PFASs were more resistant to removal than longer-chain PFASs. In addition, C, C and C PFSAs showed 10-30%, 10-50% and 20-30% higher average removal efficiency, respectively, than PFCAs with corresponding perfluoroalkyl chain length. In conclusion, biochar is a promising filter medium for removal of PFASs in OWTSs, especially for PFASs with a perfluorocarbon chain longer than C.
本研究旨在探讨生物炭过滤器作为替代或补充砂滤器从现场废水处理系统(OWTS)中去除全氟和多氟烷基物质(PFASs)的潜力。在四个处理组中,使用柱式过滤器研究了 22 周内九种全氟烷基羧酸(PFCAs;C)和三种全氟烷磺酸(PFSAs;C、、)以及一种全氟辛烷磺酰胺(FOSA;C)的浓度和去除情况:无生物膜的生物炭(BC-no-biofilm)、有活性生物膜的生物炭(BC-active-biofilm)、无活性生物膜的生物炭(BC-inactive-biofilm)和有活性生物膜的砂(Sand-active-biofilm)。过滤器在水力负荷(50 L m 天)下运行,以模拟现场过滤床的负荷率。ΣPFASs 在进水口的初始浓度范围为 1500-4900 ng L。在 BC-no-biofilm 中,短链 PFCAs(C)和 PFSA(C)的去除效率(20-60%)和吸附容量(0-88 ng ΣPFASs g BC)较低,而 C-C PFCAs、C、C PFSAs 和 FOSA 的去除效率(90-99%)和吸附容量(73-168 ng g)较高。与 BC-no-biofilm 相比,使用 BC-active-biofilm 和 BC-inactive-biofilm 时,C PFCAs 和 C、C、C PFSAs 的相对去除率通常较低。这可以解释为 BC-active-biofilm 中存在生物膜和固体,BC-inactive-biofilm 中存在废水固体,与 BC-no-biofilm 相比,这些固体减少了 PFASs 的可用性和吸附位点数量。另一方面,生物膜失活导致 C PFCAs、C、C、C PFSAs 和 FOSA 的去除效率降低,这可能是因为生物膜降解了有机物,从而与 BC-inactive-biofilm 相比,增加了吸附位点的可用性和数量。Sand-active-biofilm 对所有 PFASs 的去除率(0-70%)均较差,除 FOSA(90%)外,其吸附容量也较低(0.0-7.5 ng g)。一般来说,对于所有生物炭处理,短链 PFASs 比长链 PFASs 更难去除。此外,C、C 和 C PFSAs 的平均去除效率分别比相应的全氟烷基链长的 PFCAs 高 10-30%、10-50%和 20-30%。综上所述,生物炭是去除 OWTS 中 PFASs 的一种很有前景的过滤介质,特别是对于全氟碳链长于 C 的 PFASs。