Suppr超能文献

快速脂肪生成追踪系统(FATS)——一种稳健、高通量、可自动化的脂肪生成定量技术。

Fast Adipogenesis Tracking System (FATS)-a robust, high-throughput, automation-ready adipogenesis quantification technique.

机构信息

Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore.

Signal and Image Processing Group, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, Singapore, 138667, Singapore.

出版信息

Stem Cell Res Ther. 2019 Jan 22;10(1):38. doi: 10.1186/s13287-019-1141-0.

Abstract

Adipogenesis is essential in in vitro experimentation to assess differentiation capability of stem cells, and therefore, its accurate measurement is important. Quantitative analysis of adipogenic levels, however, is challenging and often susceptible to errors due to non-specific reading or manual estimation by observers. To this end, we developed a novel adipocyte quantification algorithm, named Fast Adipogenesis Tracking System (FATS), based on computer vision libraries. The FATS algorithm is versatile and capable of accurately detecting and quantifying percentage of cells undergoing adipogenic and browning differentiation even under difficult conditions such as the presence of large cell clumps or high cell densities. The algorithm was tested on various cell lines including 3T3-L1 cells, adipose-derived mesenchymal stem cells (ASCs), and induced pluripotent stem cell (iPSC)-derived cells. The FATS algorithm is particularly useful for adipogenic measurement of embryoid bodies derived from pluripotent stem cells and was capable of accurately distinguishing adipogenic cells from false-positive stains. We then demonstrate the effectiveness of the FATS algorithm for screening of nuclear receptor ligands that affect adipogenesis in the high-throughput manner. Together, the FATS offer a universal and automated image-based method to quantify adipocyte differentiation of different cell lines in both standard and high-throughput workflows.

摘要

脂肪生成对于评估干细胞分化能力的体外实验至关重要,因此,准确测量脂肪生成非常重要。然而,由于非特异性读取或观察者的手动估计,脂肪生成水平的定量分析具有挑战性,并且经常容易出错。为此,我们基于计算机视觉库开发了一种新的脂肪细胞定量算法,命名为快速脂肪生成跟踪系统(Fast Adipogenesis Tracking System,FATS)。FATS 算法用途广泛,即使在存在大细胞簇或高细胞密度等困难条件下,也能够准确检测和定量进行脂肪生成和棕色化分化的细胞百分比。该算法已在包括 3T3-L1 细胞、脂肪间充质干细胞(adipose-derived mesenchymal stem cells,ASCs)和诱导多能干细胞(induced pluripotent stem cells,iPSC)衍生细胞在内的各种细胞系上进行了测试。FATS 算法特别适用于多能干细胞衍生的类胚体的脂肪生成测量,并且能够准确地区分脂肪生成细胞和假阳性染色。然后,我们展示了 FATS 算法在高通量筛选影响脂肪生成的核受体配体方面的有效性。总之,FATS 提供了一种通用的、自动化的基于图像的方法,可用于在标准和高通量工作流程中定量不同细胞系的脂肪细胞分化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验