Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.
Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
J Bacteriol. 2019 Mar 13;201(7). doi: 10.1128/JB.00772-18. Print 2019 Apr 1.
l-Carnitine is a trimethylammonium compound mostly known for its contribution to fatty acid transport into mitochondria. In bacteria, it is synthesized from γ-butyrobetaine (GBB) and can be used as a carbon source. l-Carnitine can be formed directly by GBB hydroxylation or synthesized via a biosynthetic route analogous to fatty acid degradation. However, this multistep pathway has not been experimentally characterized. In this work, we identified by gene context analysis a cluster of l-carnitine anabolic genes next to those involved in its catabolism and proceeded to the complete characterization of l-carnitine biosynthesis and degradation in The five enzymes catalyzing the seven steps that convert GBB to glycine betaine are described. Metabolomic analysis confirmed the multistage synthesis of l-carnitine in GBB-grown cells but also revealed that GBB is synthesized by To our knowledge, this is the first report of aerobic GBB synthesis in bacteria. The conservation of l-carnitine metabolism genes in different bacterial taxonomic classes underscores the role of l-carnitine as a ubiquitous nutrient. The experimental characterization of novel metabolic pathways is essential for realizing the value of genome sequences and improving our knowledge of the enzymatic capabilities of the bacterial world. However, 30% to 40% of genes of a typical genome remain unannotated or associated with a putative function. We used enzyme kinetics, liquid chromatography-mass spectroscopy (LC-MS)-based metabolomics, and mutant phenotyping for the characterization of the metabolism of l-carnitine in to provide an accurate annotation of the corresponding genes. The occurrence of conserved gene clusters for carnitine metabolism in soil, plant-associated, and marine bacteria underlines the environmental abundance of carnitine and suggests this molecule might make a significant contribution to ecosystem nitrogen and carbon cycling.
左旋肉碱是一种三甲铵化合物,主要因其促进脂肪酸向线粒体转运的功能而为人所知。在细菌中,它由γ-丁基甜菜碱(GBB)合成,并可用作碳源。左旋肉碱可直接由 GBB 羟化形成,也可通过类似于脂肪酸降解的生物合成途径合成。然而,这种多步骤途径尚未经过实验表征。在这项工作中,我们通过基因上下文分析鉴定了一个靠近其分解代谢相关基因的左旋肉碱合成基因簇,并对左旋肉碱的生物合成和降解途径进行了全面表征。描述了催化将 GBB 转化为甘氨酸甜菜碱的七个步骤的五个酶。代谢组学分析证实了 GBB 培养细胞中左旋肉碱的多步合成,但也表明 GBB 是由合成的。据我们所知,这是细菌中首次报道有氧 GBB 合成。不同细菌分类群中左旋肉碱代谢基因的保守性突出了左旋肉碱作为一种普遍营养物质的作用。新代谢途径的实验表征对于实现基因组序列的价值和提高我们对细菌世界酶功能的认识至关重要。然而,典型基因组的 30%至 40%的基因仍然未注释或与假定功能相关。我们使用酶动力学、基于液相色谱-质谱(LC-MS)的代谢组学和突变表型分析来表征 中的左旋肉碱代谢,以提供对应基因的准确注释。在土壤、植物相关和海洋细菌中保守的肉碱代谢基因簇的出现强调了肉碱在环境中的丰富度,并表明该分子可能对生态系统氮和碳循环做出重大贡献。