Suppr超能文献

机器学习的粗粒度水模型。

Machine learning coarse grained models for water.

机构信息

Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA.

Department of Mechanical Engineering, University of Louisville, Louisville, KY, 40292, USA.

出版信息

Nat Commun. 2019 Jan 22;10(1):379. doi: 10.1038/s41467-018-08222-6.

Abstract

An accurate and computationally efficient molecular level description of mesoscopic behavior of ice-water systems remains a major challenge. Here, we introduce a set of machine-learned coarse-grained (CG) models (ML-BOP, ML-BOP, and ML-mW) that accurately describe the structure and thermodynamic anomalies of both water and ice at mesoscopic scales, all at two orders of magnitude cheaper computational cost than existing atomistic models. In a significant departure from conventional force-field fitting, we use a multilevel evolutionary strategy that trains CG models against not just energetics from first-principles and experiments but also temperature-dependent properties inferred from on-the-fly molecular dynamics (~ 10's of milliseconds of overall trajectories). Our ML BOP models predict both the correct experimental melting point of ice and the temperature of maximum density of liquid water that remained elusive to-date. Our ML workflow navigates efficiently through the high-dimensional parameter space to even improve upon existing high-quality CG models (e.g. mW model).

摘要

准确且高效地描述冰-水体系的介观行为仍然是一个重大挑战。在这里,我们引入了一组基于机器学习的粗粒化(CG)模型(ML-BOP、ML-BOP 和 ML-mW),这些模型可以在介观尺度上准确描述水和冰的结构和热力学异常,其计算成本比现有的原子模型低两个数量级。与传统的力场拟合方法有显著不同的是,我们使用了一种多层次的进化策略,不仅针对第一性原理和实验的能量,还针对从分子动力学(~ 10 毫秒的总轨迹)即时推断出的温度相关性质来训练 CG 模型。我们的 ML-BOP 模型不仅预测了冰的正确实验熔点,还预测了液体水的最大密度温度,这是迄今为止难以捉摸的。我们的 ML 工作流程能够高效地遍历高维参数空间,甚至可以改进现有的高质量 CG 模型(例如 mW 模型)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67e1/6342926/334b8d56b28a/41467_2018_8222_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验