Guerrero-Higueras Ángel Manuel, Álvarez-Aparicio Claudia, Calvo Olivera María Carmen, Rodríguez-Lera Francisco J, Fernández-Llamas Camino, Rico Francisco Martín, Matellán Vicente
Grupo de Robótica, Universidad de León, León, Spain.
Supercomputación Castilla y León (SCAYLE), León, Spain.
Front Neurorobot. 2019 Jan 8;12:85. doi: 10.3389/fnbot.2018.00085. eCollection 2018.
Tracking people has many applications, such as security or safe use of robots. Many onboard systems are based on Laser Imaging Detection and Ranging (LIDAR) sensors. Tracking peoples' legs using only information from a 2D LIDAR scanner in a mobile robot is a challenging problem because many legs can be present in an indoor environment, there are frequent occlusions and self-occlusions, many items in the environment such as table legs or columns could resemble legs as a result of the limited information provided by two-dimensional LIDAR usually mounted at knee height in mobile robots, etc. On the other hand, LIDAR sensors are affordable in terms of the acquisition price and processing requirements. In this article, we describe a tool named PeTra based on an off-line trained full Convolutional Neural Network capable of tracking pairs of legs in a cluttered environment. We describe the characteristics of the system proposed and evaluate its accuracy using a dataset from a public repository. Results show that PeTra provides better accuracy than Leg Detector (LD), the standard solution for Robot Operating System (ROS)-based robots.
跟踪人员有许多应用,比如安全领域或机器人的安全使用。许多车载系统都基于激光成像探测与测距(LIDAR)传感器。仅利用移动机器人中二维LIDAR扫描仪的信息来跟踪人员的腿部是一个具有挑战性的问题,因为室内环境中可能存在多条腿,存在频繁的遮挡和自遮挡情况,而且由于通常安装在移动机器人膝盖高度的二维LIDAR提供的信息有限,环境中的许多物品(如桌腿或柱子)可能看起来像腿等等。另一方面,LIDAR传感器在采集价格和处理要求方面较为实惠。在本文中,我们描述了一种名为PeTra的工具,它基于一个离线训练的全卷积神经网络,能够在杂乱环境中跟踪腿部对。我们描述了所提出系统的特点,并使用来自公共存储库的数据集评估其准确性。结果表明,PeTra比基于机器人操作系统(ROS)的机器人的标准解决方案腿部检测器(LD)具有更高的准确性。