Suppr超能文献

蛋白酶体在癌症中对蛋白质降解的调控

Regulation of Protein Degradation by Proteasomes in Cancer.

作者信息

Jang Ho Hee

机构信息

Department of Biochemistry, College of Medicine, Gachon University, Incheon, Korea.

出版信息

J Cancer Prev. 2018 Dec;23(4):153-161. doi: 10.15430/JCP.2018.23.4.153. Epub 2018 Dec 30.

Abstract

Imbalance of protein homeostasis (proteostasis) is known to cause cellular malfunction, cell death, and diseases. Elaborate regulation of protein synthesis and degradation is one of the important processes in maintaining normal cellular functions. Protein degradation pathways in eukaryotes are largely divided into proteasome-mediated degradation and lysosome-mediated degradation. Proteasome is a multisubunit complex that selectively degrades 80% to 90% of cellular proteins. Proteasome-mediated degradation can be divided into 26S proteasome (20S proteasome + 19S regulatory particle) and free 20S proteasome degradation. In 1980, it was discovered that during ubiquitination process, wherein ubiquitin binds to a substrate protein in an ATP-dependent manner, ubiquitin acts as a degrading signal to degrade the substrate protein via proteasome. Conversely, 20S proteasome degrades the substrate protein without using ATP or ubiquitin because it recognizes the oxidized and structurally modified hydrophobic patch of the substrate protein. To date, most studies have focused on protein degradation via 26S proteasome. This review describes the 26S/20S proteasomal pathway of protein degradation and discusses the potential of proteasome as therapeutic targets for cancer treatment as well as against diseases caused by abnormalities in the proteolytic system.

摘要

蛋白质稳态(蛋白质平衡)失衡会导致细胞功能异常、细胞死亡和疾病。对蛋白质合成和降解进行精细调控是维持正常细胞功能的重要过程之一。真核生物中的蛋白质降解途径主要分为蛋白酶体介导的降解和溶酶体介导的降解。蛋白酶体是一种多亚基复合物,可选择性地降解细胞内80%至90%的蛋白质。蛋白酶体介导的降解可分为26S蛋白酶体(20S蛋白酶体+19S调节颗粒)降解和游离20S蛋白酶体降解。1980年发现,在泛素化过程中,泛素以ATP依赖的方式与底物蛋白结合,泛素作为降解信号,通过蛋白酶体降解底物蛋白。相反,20S蛋白酶体不使用ATP或泛素就能降解底物蛋白,因为它能识别底物蛋白氧化和结构修饰后的疏水区域。迄今为止,大多数研究都集中在通过26S蛋白酶体进行的蛋白质降解上。本文综述了蛋白质降解的26S/20S蛋白酶体途径,并讨论了蛋白酶体作为癌症治疗以及抗蛋白水解系统异常所致疾病治疗靶点的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7752/6330989/ec9c40223383/jcp-23-153f1.jpg

相似文献

1
Regulation of Protein Degradation by Proteasomes in Cancer.
J Cancer Prev. 2018 Dec;23(4):153-161. doi: 10.15430/JCP.2018.23.4.153. Epub 2018 Dec 30.
2
Proteasomes of the yeast S. cerevisiae: genes, structure and functions.
Mol Biol Rep. 1995;21(1):3-10. doi: 10.1007/BF00990964.
3
[Ubiquitin-independent protein degradation in proteasomes].
Biomed Khim. 2018 Mar;64(2):134-148. doi: 10.18097/PBMC20186402134.
4
Chaperone activities of the 26S and 20S proteasome.
Curr Protein Pept Sci. 2005 Apr;6(2):197-203. doi: 10.2174/1389203053545453.
6
Comparative resistance of the 20S and 26S proteasome to oxidative stress.
Biochem J. 1998 Nov 1;335 ( Pt 3)(Pt 3):637-42. doi: 10.1042/bj3350637.
7
Redox regulation of the proteasome via S-glutathionylation.
Redox Biol. 2013 Dec 14;2:44-51. doi: 10.1016/j.redox.2013.12.003.
8
Proteasomes: Isolation and Activity Assays.
Curr Protoc. 2023 Apr;3(4):e717. doi: 10.1002/cpz1.717.
9
Degradation of oxidized proteins by the 20S proteasome.
Biochimie. 2001 Mar-Apr;83(3-4):301-10. doi: 10.1016/s0300-9084(01)01250-0.
10
Measurement of the Multiple Activities of 26S Proteasomes.
Methods Mol Biol. 2018;1844:289-308. doi: 10.1007/978-1-4939-8706-1_19.

引用本文的文献

1
Not Just PA28γ: What We Know About the Role of PA28αβ in Carcinogenesis.
Biomolecules. 2025 Jun 16;15(6):880. doi: 10.3390/biom15060880.
2
The gold complex auranofin sensitizes platinum resistant epithelial ovarian cancer cells to cisplatin.
Biochem Biophys Rep. 2025 Mar 29;42:101996. doi: 10.1016/j.bbrep.2025.101996. eCollection 2025 Jun.
3
CagA and Cag type IV secretion system activity have key roles in triggering gastric transcriptional and proteomic alterations.
Infect Immun. 2025 Apr 8;93(4):e0059524. doi: 10.1128/iai.00595-24. Epub 2025 Mar 6.
5
Biomarker Landscape in RASopathies.
Int J Mol Sci. 2024 Aug 6;25(16):8563. doi: 10.3390/ijms25168563.
8
9
Chemical Proteomics Reveals that the Anticancer Drug Everolimus Affects the Ubiquitin-Proteasome System.
ACS Pharmacol Transl Sci. 2024 Feb 7;7(3):787-796. doi: 10.1021/acsptsci.3c00316. eCollection 2024 Mar 8.
10
PSMD1 as a prognostic marker and potential target in oropharyngeal cancer.
BMC Cancer. 2023 Dec 16;23(1):1242. doi: 10.1186/s12885-023-11689-2.

本文引用的文献

1
Clinical Pharmacology of Ixazomib: The First Oral Proteasome Inhibitor.
Clin Pharmacokinet. 2019 Apr;58(4):431-449. doi: 10.1007/s40262-018-0702-1.
2
Regulation of proteasome assembly and activity in health and disease.
Nat Rev Mol Cell Biol. 2018 Nov;19(11):697-712. doi: 10.1038/s41580-018-0040-z.
3
Carfilzomib-Associated Cardiovascular Adverse Events: A Systematic Review and Meta-analysis.
JAMA Oncol. 2018 Mar 8;4(3):e174519. doi: 10.1001/jamaoncol.2017.4519.
4
The proteasome-interacting Ecm29 protein disassembles the 26S proteasome in response to oxidative stress.
J Biol Chem. 2017 Sep 29;292(39):16310-16320. doi: 10.1074/jbc.M117.803619. Epub 2017 Aug 15.
5
Smurf1 regulates lung cancer cell growth and migration through interaction with and ubiquitination of PIPKIγ.
Oncogene. 2017 Oct 12;36(41):5668-5680. doi: 10.1038/onc.2017.166. Epub 2017 Jun 5.
6
The Logic of the 26S Proteasome.
Cell. 2017 May 18;169(5):792-806. doi: 10.1016/j.cell.2017.04.023.
8
Wnt signaling in triple-negative breast cancer.
Oncogenesis. 2017 Apr 3;6(4):e310. doi: 10.1038/oncsis.2017.14.
9
New insights into autophagosome-lysosome fusion.
J Cell Sci. 2017 Apr 1;130(7):1209-1216. doi: 10.1242/jcs.196352. Epub 2017 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验