Suppr超能文献

石蜡包埋光刻和微切割组织微阵列:用于体外实体瘤的生物学和药理学分析的工具。

Paraffin-embedding lithography and micro-dissected tissue micro-arrays: tools for biological and pharmacological analysis of ex vivo solid tumors.

机构信息

Centre de recherche du CHUM (CRCHUM)/Institut du Cancer de Montréal, Montreal, Quebec, Canada.

出版信息

Lab Chip. 2019 Feb 12;19(4):693-705. doi: 10.1039/c8lc00982a.

Abstract

There is an urgent need and strong clinical and pharmaceutical interest in developing assays that allow for the direct testing of therapeutic agents on primary tissues. Current technologies fail to provide the required sample longevity, throughput, and integration with standard clinically proven assays to make the approach viable. Here we report a microfluidic micro-histological platform that enables ex vivo culture of a large array of prostate and ovarian cancer micro-dissected tissue (MDT) followed by direct on-chip fixation and paraffination, a process we term paraffin-embedding lithography (PEL). The result is a high density MDT-Micro Array (MDTMA) compatible with standard clinical histopathology that can be used to analyse ex vivo tumor response or resistance to therapeutic agents. The cellular morphology and tissue architecture are preserved in MDTs throughout the 15 day culture period. We also demonstrate how this methodology can be used to study molecular pathways involved in cancer by performing in-depth characterization of biological and pharmacological mechanisms such as p65 nuclear translocation via TNF stimuli, and to predict the treatment outcome in the clinic via MDT response to taxane-based therapies.

摘要

目前迫切需要开发能够直接在原代组织上测试治疗剂的检测方法,这具有重要的临床和药物学意义。当前的技术无法提供所需的样本稳定性、通量和与标准临床验证检测方法的集成,使得这种方法无法付诸实践。在这里,我们报告了一种微流控微组织学平台,该平台能够对大量前列腺癌和卵巢癌微切割组织(MDT)进行离体培养,然后直接进行芯片固定和石蜡包埋,我们将这个过程称为石蜡嵌入光刻(PEL)。其结果是得到一个高密度 MDT-Micro Array(MDTMA),与标准临床组织病理学兼容,可用于分析离体肿瘤对治疗剂的反应或耐药性。在 15 天的培养过程中,MDTs 中的细胞形态和组织结构得以保留。我们还通过对 TNF 刺激引起的 p65 核易位等生物学和药理学机制进行深入表征,展示了如何使用这种方法来研究癌症中的分子途径,并通过 MDT 对紫杉烷类治疗的反应来预测临床治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验