文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

免疫学家的新工具:从细胞到组织的淋巴结功能模型。

New tools for immunologists: models of lymph node function from cells to tissues.

机构信息

Department of Chemistry, University of Virginia, Charlottesville, VA, United States.

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States.

出版信息

Front Immunol. 2023 May 10;14:1183286. doi: 10.3389/fimmu.2023.1183286. eCollection 2023.


DOI:10.3389/fimmu.2023.1183286
PMID:37234163
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10206051/
Abstract

The lymph node is a highly structured organ that mediates the body's adaptive immune response to antigens and other foreign particles. Central to its function is the distinct spatial assortment of lymphocytes and stromal cells, as well as chemokines that drive the signaling cascades which underpin immune responses. Investigations of lymph node biology were historically explored in vivo in animal models, using technologies that were breakthroughs in their time such as immunofluorescence with monoclonal antibodies, genetic reporters, in vivo two-photon imaging, and, more recently spatial biology techniques. However, new approaches are needed to enable tests of cell behavior and spatiotemporal dynamics under well controlled experimental perturbation, particularly for human immunity. This review presents a suite of technologies, comprising in vitro, ex vivo and in silico models, developed to study the lymph node or its components. We discuss the use of these tools to model cell behaviors in increasing order of complexity, from cell motility, to cell-cell interactions, to organ-level functions such as vaccination. Next, we identify current challenges regarding cell sourcing and culture, real time measurements of lymph node behavior in vivo and tool development for analysis and control of engineered cultures. Finally, we propose new research directions and offer our perspective on the future of this rapidly growing field. We anticipate that this review will be especially beneficial to immunologists looking to expand their toolkit for probing lymph node structure and function.

摘要

淋巴结是一个高度结构化的器官,它介导机体对抗原和其他外来颗粒的适应性免疫反应。其功能的核心是淋巴细胞和基质细胞的独特空间排列,以及趋化因子,它们驱动着构成免疫反应基础的信号级联反应。淋巴结生物学的研究历史上是在动物模型中进行的,使用了当时具有突破性的技术,如单克隆抗体的免疫荧光、遗传报告基因、体内双光子成像,以及最近的空间生物学技术。然而,需要新的方法来实现对细胞行为和时空动力学的测试,特别是在人类免疫方面,这些测试需要在良好控制的实验扰动下进行。

本文综述了一系列技术,包括体外、离体和计算机模拟模型,用于研究淋巴结或其成分。我们讨论了这些工具在增加细胞行为复杂性方面的应用,从细胞迁移、细胞间相互作用到器官水平的功能,如疫苗接种。接下来,我们确定了当前在细胞来源和培养、体内淋巴结行为的实时测量以及用于分析和控制工程培养的工具开发方面的挑战。最后,我们提出了新的研究方向,并对这个快速发展领域的未来提出了看法。我们预计,这篇综述将特别有助于免疫学家扩大他们用于探测淋巴结结构和功能的工具包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a514/10206051/969d4c58a021/fimmu-14-1183286-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a514/10206051/446ec751d7a9/fimmu-14-1183286-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a514/10206051/9a1d57a93ce8/fimmu-14-1183286-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a514/10206051/503a2e98ebcf/fimmu-14-1183286-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a514/10206051/5c07cedfa24e/fimmu-14-1183286-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a514/10206051/969d4c58a021/fimmu-14-1183286-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a514/10206051/446ec751d7a9/fimmu-14-1183286-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a514/10206051/9a1d57a93ce8/fimmu-14-1183286-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a514/10206051/503a2e98ebcf/fimmu-14-1183286-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a514/10206051/5c07cedfa24e/fimmu-14-1183286-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a514/10206051/969d4c58a021/fimmu-14-1183286-g005.jpg

相似文献

[1]
New tools for immunologists: models of lymph node function from cells to tissues.

Front Immunol. 2023

[2]
Lymph Node-on-Chip Technology: Cutting-Edge Advances in Immune Microenvironment Simulation.

Pharmaceutics. 2024-5-16

[3]
Engineering Strategies for Lymph Node Targeted Immune Activation.

Acc Chem Res. 2020-10-20

[4]
Imaging Immunity in Lymph Nodes: Past, Present and Future.

Adv Exp Med Biol. 2016

[5]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[6]
Integrative Computational Modeling of the Lymph Node Stromal Cell Landscape.

Front Immunol. 2018-10-23

[7]
Stromal infrastructure of the lymph node and coordination of immunity.

Trends Immunol. 2014-12-9

[8]
Molecular tracking devices quantify antigen distribution and archiving in the murine lymph node.

Elife. 2021-4-12

[9]
Lymph node - an organ for T-cell activation and pathogen defense.

Immunol Rev. 2016-5

[10]
Acute Lymph Node Slices Are a Functional Model System to Study Immunity Ex Vivo.

ACS Pharmacol Transl Sci. 2021-1-8

引用本文的文献

[1]
Monitoring Immune Responses to Vaccination: A Focus on Single-Cell Analysis and Associated Challenges.

Vaccines (Basel). 2025-4-16

[2]
Functional organotypic human lymph node model with native immune cells benefits from fibroblastic reticular cell enrichment.

Sci Rep. 2025-4-10

[3]
Interstitial fluid flow in an engineered human lymph node stroma model modulates T cell egress and stromal change.

APL Bioeng. 2025-4-4

[4]
Deciphering the Human Germinal Center: A Review of Models to Study T-B Cell Interactions.

Eur J Immunol. 2025-2

[5]
Initiation of primary T cell-B cell interactions and extrafollicular antibody responses in an organized microphysiological model of the human lymph node.

bioRxiv. 2025-1-15

[6]
Boosting B cells in blood-derived organoids.

Nat Mater. 2025-2

[7]
A 3D-printed multi-compartment organ-on-chip platform with a tubing-free pump models communication with the lymph node.

Lab Chip. 2025-1-14

[8]
IL-7 promotes mRNA vaccine-induced long-term immunity.

J Nanobiotechnology. 2024-11-16

[9]
Tonsil explants as a human model to study vaccine responses.

Front Immunol. 2024-9-17

[10]
Modeling memory B cell responses in a lymphoid organ-chip to evaluate mRNA vaccine boosting.

J Exp Med. 2024-10-7

本文引用的文献

[1]
Lymphoid stromal cells-more than just a highway to humoral immunity.

Oxf Open Immunol. 2021-5-24

[2]
Lung and lymph node explants to study the interaction between host cells and canine distemper virus.

Res Vet Sci. 2023-1

[3]
Multiple particle tracking (MPT) using PEGylated nanoparticles reveals heterogeneity within murine lymph nodes and between lymph nodes at different locations.

Biomater Sci. 2022-12-6

[4]
Manipulation of the inflammatory reflex as a therapeutic strategy.

Cell Rep Med. 2022-7-19

[5]
Integrative lymph node-mimicking models created with biomaterials and computational tools to study the immune system.

Mater Today Bio. 2022-4-21

[6]
DestVI identifies continuums of cell types in spatial transcriptomics data.

Nat Biotechnol. 2022-9

[7]
A single-cell atlas of non-haematopoietic cells in human lymph nodes and lymphoma reveals a landscape of stromal remodelling.

Nat Cell Biol. 2022-4

[8]
Ectopic Lymphoid Follicle Formation and Human Seasonal Influenza Vaccination Responses Recapitulated in an Organ-on-a-Chip.

Adv Sci (Weinh). 2022-5

[9]
Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics.

Adv Drug Deliv Rev. 2022-3

[10]
Cell2location maps fine-grained cell types in spatial transcriptomics.

Nat Biotechnol. 2022-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索