CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
Soft Matter. 2019 Feb 20;15(8):1747-1757. doi: 10.1039/c8sm02170h.
We develop an efficient parallel multiscale method that bridges the atomistic and mesoscale regimes, from nanometers to microns and beyond, via concurrent coupling of atomistic simulation and mesoscopic dynamics. In particular, we combine an all-atom molecular dynamics (MD) description for specific atomistic details in the vicinity of the functional surface with a dissipative particle dynamics (DPD) approach that captures mesoscopic hydrodynamics in the domain away from the functional surface. In order to achieve a seamless transition in dynamic properties we endow the MD simulation with a DPD thermostat, which is validated against experimental results by modeling water at different temperatures. We then validate the MD-DPD coupling method for transient Couette and Poiseuille flows, demonstrating that the concurrent MD-DPD coupling can resolve accurately the continuum-based analytical solutions. Subsequently, we simulate shear flows over grafted polydimethylsiloxane (PDMS) surfaces (polymer brushes) for various grafting densities, and investigate the slip flow as a function of the shear stress. We verify that a "universal" power law exists for the slip length, in agreement with published results. Having validated the MD-DPD coupling method, we simulate time-dependent flows past an endothelial glycocalyx layer (EGL) in a microchannel. Coupled simulation results elucidate the dynamics of the EGL changing from an equilibrium state to a compressed state under shear by aligning the molecular structures along the shear direction. MD-DPD simulation results agree well with results of a single MD simulation, but with the former more than two orders of magnitude faster than the latter for system sizes above one micron.
我们开发了一种高效的并行多尺度方法,通过原子模拟和介观动力学的并发耦合,从纳米到微米及以上跨越原子和介观领域。具体来说,我们将功能表面附近的特定原子细节的全原子分子动力学 (MD) 描述与耗散粒子动力学 (DPD) 方法相结合,该方法在远离功能表面的区域中捕获介观流体动力学。为了实现动力学特性的无缝过渡,我们为 MD 模拟配备了 DPD 恒温器,通过对不同温度下的水进行建模来验证该恒温器与实验结果的一致性。然后,我们验证了 MD-DPD 耦合方法在瞬态 Couette 和 Poiseuille 流动中的应用,证明了并发 MD-DPD 耦合可以准确地解析基于连续体的分析解。随后,我们模拟了各种接枝密度下接枝聚二甲基硅氧烷 (PDMS) 表面(聚合物刷)上的剪切流,并研究了剪切应力下的滑移流动。我们验证了滑移长度存在“通用”幂律关系,与已发表的结果一致。验证了 MD-DPD 耦合方法后,我们模拟了微通道中内皮糖萼层 (EGL) 随时间变化的流动。耦合模拟结果阐明了 EGL 的动力学,即通过沿剪切方向排列分子结构,从平衡状态转变为压缩状态。MD-DPD 模拟结果与单个 MD 模拟结果吻合良好,但对于大于一微米的系统尺寸,前者的速度比后者快两个数量级以上。