Kojic Milos, Filipovic Nenad, Tsuda Akira
Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA ; University of Kragujevac, 34000 Kragujevac, Serbia.
Comput Methods Appl Mech Eng. 2013 Jan 15;197(6-8):821-833. doi: 10.1016/j.cma.2007.09.011.
A multiscale procedure to couple a mesoscale discrete particle model and a macroscale continuum model of incompressible fluid flow is proposed in this study. We call this procedure the mesoscopic bridging scale (MBS) method since it is developed on the basis of the bridging scale method for coupling molecular dynamics and finite element models [G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys. 190 (2003) 249-274]. We derive the governing equations of the MBS method and show that the differential equations of motion of the mesoscale discrete particle model and finite element (FE) model are only coupled through the force terms. Based on this coupling, we express the finite element equations which rely on the Navier-Stokes and continuity equations, in a way that the internal nodal FE forces are evaluated using viscous stresses from the mesoscale model. The dissipative particle dynamics (DPD) method for the discrete particle mesoscale model is employed. The entire fluid domain is divided into a local domain and a global domain. Fluid flow in the local domain is modeled with both DPD and FE method, while fluid flow in the global domain is modeled by the FE method only. The MBS method is suitable for modeling complex (colloidal) fluid flows, where continuum methods are sufficiently accurate only in the large fluid domain, while small, local regions of particular interest require detailed modeling by mesoscopic discrete particles. Solved examples - simple Poiseuille and driven cavity flows illustrate the applicability of the proposed MBS method.
本研究提出了一种多尺度方法,用于耦合不可压缩流体流动的介观离散粒子模型和宏观连续介质模型。我们将此方法称为介观桥接尺度(MBS)方法,因为它是在用于耦合分子动力学和有限元模型的桥接尺度方法的基础上发展而来的[G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys. 190 (2003) 249-274]。我们推导了MBS方法的控制方程,并表明介观离散粒子模型和有限元(FE)模型的运动微分方程仅通过力项耦合。基于这种耦合,我们以一种使用介观模型的粘性应力来评估内部节点有限元力的方式,表达了依赖于纳维-斯托克斯方程和连续性方程的有限元方程。离散粒子介观模型采用耗散粒子动力学(DPD)方法。整个流体域被划分为局部域和全局域。局部域内的流体流动用DPD和有限元方法进行建模,而全局域内的流体流动仅用有限元方法进行建模。MBS方法适用于对复杂(胶体)流体流动进行建模,在这种情况下,连续介质方法仅在大流体域中足够精确,而特别感兴趣的小局部区域需要通过介观离散粒子进行详细建模。求解示例——简单的泊肃叶流和驱动腔流说明了所提出的MBS方法的适用性。