Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China.
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Science , Beijing 100190 , P. R. China.
ACS Appl Mater Interfaces. 2019 Feb 20;11(7):7591-7599. doi: 10.1021/acsami.8b21088. Epub 2019 Feb 11.
Precise control of a biological droplet's adhesive force on a liquid-repellent surface for smart antifouling systems is critical and fundamental to scientific research and industrial applications. Although slippery surfaces with stimuli-responsive wetting behaviors have been reported, challenge still remains in designing responsive biological droplets to achieve controllable adhesion and antifouling property. Here, we developed a thermoresponsive biological droplet adhesion system to precisely control its adhesion on the lubricant-infused slippery surface. Single-stranded DNA (ssDNA) in the biological droplet displays molecular configuration reversible deformation under external thermal stimuli. This property ascribes to the changing amount of exposed hydrophobic moieties of ssDNA, which strongly affects the interfacial hydrophobic interaction with the lubricant. This work may improve the understanding of the principles underlying liquid-lubricant interfacial adhesion, open up opportunities for a new class of antifouling systems, and provide a promising system for controllable manipulation of liquids' motion in biochips and microreactor devices.
精确控制生物液滴在疏液表面上的粘附力对于智能防污系统至关重要,这也是科学研究和工业应用的基础。尽管已经报道了具有刺激响应润湿行为的光滑表面,但设计响应性生物液滴以实现可控粘附和防污性能仍然具有挑战性。在这里,我们开发了一种热响应生物液滴粘附系统,以精确控制其在润滑性光滑表面上的粘附。生物液滴中的单链 DNA(ssDNA)在外部热刺激下显示分子构象的可逆变形。这种特性归因于 ssDNA 暴露的疏水性部分的变化量,这强烈影响与润滑剂的界面疏水性相互作用。这项工作可以提高对液体-润滑剂界面粘附原理的理解,为新型防污系统开辟机会,并为生物芯片和微反应装置中液体运动的可控操作提供有前途的系统。