Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States.
Department of Chemistry and Chemical Biology , The University of New Mexico , Albuquerque , New Mexico 87131 , United States.
Inorg Chem. 2019 Feb 4;58(3):2054-2068. doi: 10.1021/acs.inorgchem.8b03093. Epub 2019 Jan 23.
We report the syntheses, crystal structures, and characterization of the novel cis-dioxomolybdenum(VI) complexes Tpm*MoOCl (1) and Tpm*MoOCl (2), which are supported by the charge-neutral tris(3,5-dimethyl-1-pyrazolyl)methane (Tpm*) ligand. A comparison between isostructural [TpmMoOCl] and TpMoOCl [Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate] reveals the effects of one unit of overall charge difference on their spectroscopic and electrochemical properties, geometric and electronic structures, and O-atom-transfer (OAT) reactivities, providing new insight into pyranopterin molybdoenzyme OAT reactivity. Computational studies of these molecules indicate that the delocalized positive charge lowers the lowest unoccupied molecular orbital (LUMO) energy of cationic [TpmMoOCl] relative to TpMoOCl. Despite their virtually identical geometric structures revealed by crystal structures, the Mo/Mo redox potential of 2 is increased by 350 mV relative to that of TpMoOCl. This LUMO stabilization also contributes to an increased effective electrophilicity of [TpmMoOCl] relative to that of TpMoOCl, resulting in a more favorable resonant interaction between the molydenum complex LUMO and the highest occupied molecular orbital (HOMO) of the PPh substrate. This leads to a greater thermodynamic driving force, an earlier transition state, and a lowered activation barrier for the orbitally controlled first step of the OAT reaction in the Tpm system relative to the Tp* system. An Eyring plot analysis shows that this initial step yields an O≡Mo-OPPh intermediate via an associative transition state, and the reaction is ∼500-fold faster for 2 than for TpMoOCl. The second step of the OAT reaction entails solvolysis of the O≡Mo-OPPh intermediate to afford the solvent-substituted Mo product and is 750-fold faster for the Tpm system at -15 °C compared to the Tp* system. The observed rate enhancement for the second step is ascribed to a switch of the reaction mechanism from a dissociative pathway for the Tp* system to an alternative associative pathway for the Tpm* system. This is due to a more Lewis acidic Mo center in the Tpm* system.
我们报告了新型顺式二氧钼(VI)配合物Tpm*MoOCl(1)和Tpm*MoOCl(2)的合成、晶体结构和表征,这些配合物由中性的三(3,5-二甲基-1-吡唑基)甲烷(Tpm*)配体支持。对同构的[TpmMoOCl]和 TpMoOCl [Tp*=氢三(3,5-二甲基-1-吡唑基)硼酸酯]的比较揭示了单位总电荷差对它们的光谱和电化学性质、几何和电子结构以及 O-原子转移(OAT)反应性的影响,为吡喃并喋呤钼酶 OAT 反应性提供了新的见解。这些分子的计算研究表明,离域正电荷降低了阳离子[TpmMoOCl]的最低未占据分子轨道(LUMO)能量,相对于 TpMoOCl。尽管它们的晶体结构几乎相同,但 2 的 Mo/Mo 氧化还原电位相对于 TpMoOCl 升高了 350 mV。这种 LUMO 稳定化也导致[TpmMoOCl]相对于 TpMoOCl 的有效亲电性增加,从而导致钼配合物 LUMO 和 PPh 底物的最高占据分子轨道(HOMO)之间更有利的共振相互作用。这导致轨道控制的 OAT 反应的第一步的热力学驱动力更大、过渡态更早、活化能更低,相对于 Tp系统,Tpm系统的反应更快。Eyring 图分析表明,该初始步骤通过缔合过渡态生成 O≡Mo-OPPh 中间体,并且 2 的反应速度比 TpMoOCl 快约 500 倍。OAT 反应的第二步涉及 O≡Mo-OPPh 中间体的溶剂解,在-15°C 下,Tpm系统的反应速度比 Tp系统快 750 倍。第二步观察到的速率增强归因于反应机制从 Tp系统的解离途径切换到 Tpm系统的替代缔合途径。这是由于 Tpm*系统中的 Mo 中心更具路易斯酸性。