ETH Zurich , Department of Health Sciences and Technology , Schmelzbergstrasse 9, LFO E23 , 8092 , Zurich , Switzerland.
ETH Zurich , Department of Materials , Wolfgang-Pauli-Strasse 10 , 8093 Zurich , Switzerland.
Biomacromolecules. 2019 Mar 11;20(3):1288-1296. doi: 10.1021/acs.biomac.8b01706. Epub 2019 Feb 6.
Cellulose nanofibrils (CNFs) are a renewable and facile to produce nanomaterial that recently gained a lot of attention in soft material research. The nanostructural properties of the fibrils largely determine their self-organizing functionalities, and the ability to tune the CNF nanostructure through control of the processing parameters is therefore crucial for developing new applications. In this study, we systematically altered the CNF production parameters (i.e., variation in cellulose source, chemical, and mechanical treatment) to observe their impact on the nanostructural properties of the resulting fibrils. Atomic force microscopy (AFM) allowed detailed topological examination of individual CNFs to elucidate fibril properties such as contour length, kink distribution and the right-handed twist periodicity of individual fibrils. Statistical analysis revealed a large dependency of the fibril properties on the industrial treatment of the cellulose source material. Our results furthermore confirm that the average charge density of the fibrils regulates both contour length and twist periodicity and, thus, has a very strong impact on the final morphology of CNFs. These results provide a route to tune the detailed nanostructure of CNFs with potential impact on the self-organization of these biological colloids and their optimal use in new nanomaterials.
纤维素纳米纤维(CNF)是一种可再生且易于制备的纳米材料,最近在软物质研究中受到了广泛关注。纤维的纳米结构特性在很大程度上决定了它们的自组织功能,因此通过控制加工参数来调整 CNF 纳米结构的能力对于开发新的应用至关重要。在这项研究中,我们系统地改变了 CNF 的生产参数(即纤维素来源、化学和机械处理的变化),以观察它们对所得纤维纳米结构特性的影响。原子力显微镜(AFM)允许对单个 CNF 进行详细的拓扑检查,以阐明纤维的特性,如轮廓长度、扭结分布和单个纤维的右旋扭曲周期性。统计分析表明,纤维的特性与纤维素原料的工业处理有很大的依赖性。我们的结果进一步证实,纤维的平均电荷密度调节了轮廓长度和扭曲周期性,因此对 CNF 的最终形态有很强的影响。这些结果为调整 CNF 的详细纳米结构提供了一种途径,这可能对这些生物胶体的自组织及其在新型纳米材料中的最佳应用产生影响。