Department of Chemistry and Biochemistry, School of Advanced Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan.
Waseda Research Institute for Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan.
J Chem Theory Comput. 2019 Mar 12;15(3):1719-1727. doi: 10.1021/acs.jctc.8b01214. Epub 2019 Feb 7.
In this study, the divide-and-conquer (DC) method was extended to time-dependent density functional tight-binding (TDDFTB) theory to enable excited-state calculations of large systems and is denoted by DC-TDDFTB. The efficient diagonalization algorithms of TDDFTB and DC-TDDFTB methods were implemented into our in-house program. Test calculations of polyethylene aldehyde and p-coumaric acid, a pigment in photoactive yellow protein, in water demonstrate the high accuracy and efficiency of the developed DC-TDDFTB method. Furthermore, the (TD)DFTB metadynamics simulations of acridinium in the ground and excited states give reasonable p K values compared with the corresponding experimental values.
在这项研究中,分而治之(DC)方法被扩展到时间依赖的密度泛函紧束缚(TDDFTB)理论中,以实现大系统的激发态计算,并用 DC-TDDFTB 表示。TDDFTB 和 DC-TDDFTB 方法的高效对角化算法已被实现到我们的内部程序中。在水中的聚乙醛和对香豆酸(光活性黄色蛋白中的一种色素)的测试计算证明了所开发的 DC-TDDFTB 方法的高精度和高效率。此外,吖啶在基态和激发态的(TD)DFTB 元动力学模拟给出了与相应实验值相比合理的 pK 值。