Suppr超能文献

基于能量的分治二阶莫勒-普列斯特定理微扰理论中缓冲区的自动确定

Energy-based automatic determination of buffer region in the divide-and-conquer second-order Møller-Plesset perturbation theory.

作者信息

Fujimori Toshikazu, Kobayashi Masato, Taketsugu Tetsuya

机构信息

Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.

出版信息

J Comput Chem. 2021 Apr 5;42(9):620-629. doi: 10.1002/jcc.26486. Epub 2021 Feb 3.

Abstract

In the linear-scaling divide-and-conquer (DC) electronic structure method, each subsystem is calculated together with the neighboring buffer region, the size of which affects the energy error introduced by the fragmentation in the DC method. The DC self-consistent field calculation utilizes a scheme to automatically determine the appropriate buffer region that is as compact as possible for reducing the computational time while maintaining acceptable accuracy (J. Comput. Chem. 2018, 39, 909). To extend the automatic determination scheme of the buffer region to the DC second-order Møller-Plesset perturbation (MP2) calculation, a scheme for estimating the subsystem MP2 correlation energy contribution from each atom in the buffer region is proposed. The estimation is based on the atomic orbital Laplace MP2 formalism. Based on this, an automatic buffer determination scheme for the DC-MP2 calculation is constructed and its performance for several types of systems is assessed.

摘要

在线性标度分治(DC)电子结构方法中,每个子系统与相邻的缓冲区一起计算,缓冲区的大小会影响DC方法中由于分割引入的能量误差。DC自洽场计算采用一种方案来自动确定合适的缓冲区,该缓冲区尽可能紧凑,以减少计算时间,同时保持可接受的精度(《计算化学杂志》,2018年,39卷,909页)。为了将缓冲区的自动确定方案扩展到DC二阶Møller-Plesset微扰(MP2)计算,提出了一种从缓冲区中每个原子估计子系统MP2相关能贡献的方案。该估计基于原子轨道拉普拉斯MP2形式。基于此,构建了DC-MP2计算的自动缓冲区确定方案,并评估了其对几种类型系统的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/715e/7986104/f592a3db95d7/JCC-42-620-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验