Suppr超能文献

具有高离子迁移数的纳米多孔聚合物薄膜在用于电动交通的轻质电池中稳定锂金属阳极。

Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation.

机构信息

Joint Center for Energy Storage Research , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 United States.

The Molecular Foundry , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States.

出版信息

Nano Lett. 2019 Feb 13;19(2):1387-1394. doi: 10.1021/acs.nanolett.8b05101. Epub 2019 Jan 28.

Abstract

To suppress dendrite formation in lithium metal batteries, high cation transference number electrolytes that reduce electrode polarization are highly desirable, but rarely available using conventional liquid electrolytes. Here, we show that liquid electrolytes increase their cation transference numbers (e.g., ∼0.2 to >0.70) when confined to a structurally rigid polymer host whose pores are on a similar length scale (0.5-2 nm) as the Debye screening length in the electrolyte, which results in a diffuse electrolyte double layer at the polymer-electrolyte interface that retains counterions and reject co-ions from the electrolyte due to their larger size. Lithium anodes coated with ∼1 μm thick overlayers of the polymer host exhibit both a low area-specific resistance and clear dendrite-suppressing character, as evident from their performance in Li-Li and Li-Cu cells as well as in post-mortem analysis of the anode's morphology after cycling. High areal capacity Li-S cells (4.9 mg cm; 8.2 mAh cm) implementing these high transference number polymer-hosted liquid electrolytes were remarkably stable, considering ∼24 μm of lithium was electroreversibly deposited in each cycle at a C-rate of 0.2. We further identified a scalable manufacturing path for these polymer-coated lithium electrodes, which are drop-in components for lithium metal battery manufacturing.

摘要

为了抑制锂电池中的枝晶形成,需要高阳离子迁移数的电解质来降低电极极化,这在传统的液态电解质中很少见。在这里,我们表明,当液态电解质被限制在结构刚性的聚合物主体中时,其阳离子迁移数会增加(例如,从约 0.2 增加到>0.70),聚合物主体的孔的尺寸与电解质中的德拜屏蔽长度相似(0.5-2nm),这导致在聚合物-电解质界面处形成扩散的电解质双电层,该双电层保留抗衡离子并排斥电解质中的共离子,因为它们的尺寸较大。用聚合物主体的约 1μm 厚的覆盖层涂覆的锂阳极表现出低的面比电阻和明显的抑制枝晶特性,这从它们在 Li-Li 和 Li-Cu 电池中的性能以及循环后阳极形态的事后分析中可以明显看出。在 C 率为 0.2 时,这些具有高迁移数的聚合物主体支撑的液态电解质实现了高面积容量 Li-S 电池(4.9mgcm;8.2mAhcm),这是非常稳定的,考虑到在每个循环中可电化学可逆地沉积约 24μm 的锂。我们进一步确定了这些聚合物涂层锂电极的可扩展制造路径,它们是用于锂金属电池制造的即插即用组件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验