Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan.
J Gen Physiol. 2019 Feb 4;151(2):214-230. doi: 10.1085/jgp.201812192. Epub 2019 Jan 23.
Drug-induced block of the cardiac rapid delayed rectifying potassium current ( ), carried by the human ether-a-go-go-related gene (hERG) channel, is the most common cause of acquired long QT syndrome. Indeed, some, but not all, drugs that block hERG channels cause fatal cardiac arrhythmias. However, there is no clear method to distinguish between drugs that cause deadly arrhythmias and those that are clinically safe. Here we propose a mechanism that could explain why certain clinically used hERG blockers are less proarrhythmic than others. We demonstrate that several drugs that block hERG channels, but have favorable cardiac safety profiles, also evoke another effect; they facilitate the hERG current amplitude in response to low-voltage depolarization. To investigate how hERG facilitation impacts cardiac safety, we develop computational models of block with and without this facilitation. We constrain the models using data from voltage clamp recordings of hERG block and facilitation by nifekalant, a safe class III antiarrhythmic agent. Human ventricular action potential simulations demonstrate the ability of nifekalant to suppress ectopic excitations, with or without facilitation. Without facilitation, excessive block evokes early afterdepolarizations, which cause lethal arrhythmias. When facilitation is introduced, early afterdepolarizations are prevented at the same degree of block. Facilitation appears to prevent early afterdepolarizations by increasing during the repolarization phase of action potentials. We empirically test this prediction in isolated rabbit ventricular myocytes and find that action potential prolongation with nifekalant is less likely to induce early afterdepolarization than action potential prolongation with dofetilide, a hERG channel blocker that does not induce facilitation. Our data suggest that hERG channel blockers that induce facilitation increase the repolarization reserve of cardiac myocytes, rendering them less likely to trigger lethal ventricular arrhythmias.
药物诱导的快速延迟整流钾电流( )阻断,由人类 ether-a-go-go 相关基因(hERG)通道携带,是获得性长 QT 综合征的最常见原因。事实上,一些但不是所有阻断 hERG 通道的药物都会导致致命性心律失常。然而,目前尚无明确的方法来区分导致致命性心律失常的药物和临床安全的药物。在这里,我们提出了一种机制,可以解释为什么某些临床使用的 hERG 阻滞剂比其他药物的致心律失常性更小。我们证明,一些阻断 hERG 通道但具有良好心脏安全性的药物也会产生另一种效应;它们促进 hERG 电流幅度对低电压去极化的反应。为了研究 hERG 易化如何影响心脏安全性,我们开发了具有和不具有这种易化的 hERG 阻滞的计算模型。我们使用 nifekalant(一种安全的 III 类抗心律失常药物)对 hERG 阻滞和易化的电压钳记录数据来约束模型。人室性动作电位模拟表明,nifekalant 具有抑制异位兴奋的能力,无论是在有易化还是没有易化的情况下。没有易化,过度的 hERG 阻滞会引起致命性心律失常的早期后除极。当引入易化时,在相同的阻滞程度下,早期后除极会被阻止。易化似乎通过在动作电位复极化阶段增加 来防止早期后除极。我们在离体兔心室肌细胞中对这一预测进行了经验性测试,发现与 dofetilide(一种不诱导易化的 hERG 通道阻滞剂)相比,nifekalant 引起的动作电位延长不太可能引发早期后除极。我们的数据表明,诱导易化的 hERG 通道阻滞剂增加了心肌细胞的复极储备,从而降低了引发致命性室性心律失常的可能性。