Suppr超能文献

优化先导候选药物半衰期的策略。

Strategies to optimize drug half-life in lead candidate identification.

机构信息

a Department of Drug Metabolism and Pharmacokinetics , Genentech , South San Francisco , CA , USA.

出版信息

Expert Opin Drug Discov. 2019 Mar;14(3):221-230. doi: 10.1080/17460441.2019.1569625. Epub 2019 Jan 24.

Abstract

The PK optimization of drug candidates is one of the most resource-intensive tasks in pharmaceutical research and development. With the increasing availability of in silico, in vitro and mechanistic in vivo ADME models, drug discovery scientists have progressively learned to recognize common SAR patterns and engineer data-driven strategies to accelerate the resolution of ADME issues in lead optimization. Many of these strategies gravitate toward the concept of drug-likeness, which defines a number of optimal holistic physicochemical parameters (such as lipophilicity) that idealized oral drugs possess. Areas covered: Herein, the authors discuss the interplay of lipophilicity with in vitro and in vivo ADME data in order to refine existing thought around drug half-life optimization. Strategies to prolong the half-life of oral drugs via formulation are beyond the scope of this review. Expert opinion: Optimizing active properties such as potency, selectivity, and intrinsic metabolic clearance is an unambiguously beneficial strategy for small molecules within or beyond the Lipinski rule of five chemical space. The data that we present in this work suggests that emphasis should be primarily placed on optimizing active properties such as potency, selectivity, and metabolic stability.

摘要

药物候选物的 PK 优化是药物研发中最耗费资源的任务之一。随着越来越多的计算、体外和基于机制的体内 ADME 模型的出现,药物发现科学家逐渐学会了识别常见的 SAR 模式,并采用数据驱动的策略来加速 lead optimization 中 ADME 问题的解决。这些策略中的许多都倾向于药物相似性的概念,该概念定义了一些理想口服药物所具有的最佳整体物理化学参数(如亲脂性)。涵盖领域:本文作者讨论了亲脂性与体外和体内 ADME 数据的相互作用,以完善现有关于药物半衰期优化的思路。通过制剂延长口服药物半衰期的策略不在本综述的范围内。专家意见:优化活性性质,如效力、选择性和内在代谢清除率,对于 Lipinski 五规则化学空间内或之外的小分子来说是一种明确有益的策略。我们在这项工作中提出的数据分析表明,应该主要侧重于优化活性性质,如效力、选择性和代谢稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验