Department of Chemistry, Faculty of Science, Kasetsart University, 50 Phaholyothin Rd, Chatuchak, Bangkok 10900, Thailand.
Curr Top Med Chem. 2011;11(4):358-81. doi: 10.2174/156802611794480927.
ADME prediction is an extremely challenging area as many of the properties we try to predict are a result of multiple physiological processes. In this review we consider how in-silico predictions of ADME processes can be used to help bias medicinal chemistry into more ideal areas of property space, minimizing the number of compounds needed to be synthesized to obtain the required biochemical/physico-chemical profile. While such models are not sufficiently accurate to act as a replacement for in-vivo or in-vitro methods, in-silico methods nevertheless can help us to understand the underlying physico-chemical dependencies of the different ADME properties, and thus can give us inspiration on how to optimize them. Many global in-silico ADME models (i.e generated on large, diverse datasets) have been reported in the literature. In this paper we selectively review representatives from each distinct class and discuss their relative utility in drug discovery. For each ADME parameter, we limit our discussion to the most recent, most predictive or most insightful examples in the literature to highlight the current state of the art. In each case we briefly summarize the different types of models available for each parameter (i.e simple rules, physico-chemical and 3D based QSAR predictions), their overall accuracy and the underlying SAR. We also discuss the utility of the models as related to lead generation and optimization phases of discovery research.
ADME 预测是一个极具挑战性的领域,因为我们试图预测的许多性质都是多个生理过程的结果。在这篇综述中,我们考虑了如何将 ADME 过程的计算预测用于帮助将药物化学偏向更理想的性质空间,从而最小化需要合成的化合物数量,以获得所需的生化/物理化学特性。虽然这些模型还不够准确,可以替代体内或体外方法,但计算方法仍然可以帮助我们了解不同 ADME 性质的潜在物理化学依赖性,从而为我们提供如何优化它们的灵感。文献中已经报道了许多全局计算 ADME 模型(即在大型、多样化的数据集上生成)。在本文中,我们有选择地回顾了每个不同类别中的代表,并讨论了它们在药物发现中的相对实用性。对于每个 ADME 参数,我们将讨论限制在文献中最新、最具预测性或最有见地的示例,以突出当前的技术水平。在每种情况下,我们简要总结了每个参数可用的不同类型的模型(即简单规则、物理化学和 3D 基于 QSAR 的预测)、它们的整体准确性和潜在的 SAR。我们还讨论了这些模型在发现研究的先导生成和优化阶段的实用性。