Xia Qingbing, Huang Yang, Xiao Jin, Wang Lei, Lin Zeheng, Li Weijie, Liu Hui, Gu Qinfen, Liu Hua Kun, Chou Shu-Lei
Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, North Wollongong, New South Wales, 2500, Australia.
Shenzhen key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
Angew Chem Int Ed Engl. 2019 Mar 18;58(12):4022-4026. doi: 10.1002/anie.201813721. Epub 2019 Feb 15.
Structural modulation and surface engineering have remarkable advantages for fast and efficient charge storage. Herein, we present a phosphorus modulation strategy which simultaneously realizes surface structural disorder with interior atomic-level P-doping to boost the Na storage kinetics of TiO . It is found that the P-modulated TiO nanocrystals exhibit a favourable electronic structure, and enhanced structural stability, Na transfer kinetics, as well as surface electrochemical reactivity, resulting in a genuine zero-strain characteristic with only approximately 0.1 % volume variation during Na insertion/extraction, and exceptional Na storage performance including an ultrahigh rate capability of 210 mAh g at 50 C and a strong long-term cycling stability without significant capacity decay up to 5000 cycles at 30 C.
结构调制和表面工程在快速高效电荷存储方面具有显著优势。在此,我们提出一种磷调制策略,该策略同时实现表面结构无序和内部原子级磷掺杂,以提升TiO的钠存储动力学。研究发现,磷调制的TiO纳米晶体展现出良好的电子结构、增强的结构稳定性、钠转移动力学以及表面电化学反应活性,从而在钠嵌入/脱出过程中产生真正的零应变特性,体积变化仅约0.1%,并具有优异的钠存储性能,包括在50 C时210 mAh g的超高倍率性能以及在30 C下高达5000次循环且无明显容量衰减的强大长期循环稳定性。