Nowak Michal, Tryniszewski Wiesław, Sarniak Agata, Włodarczyk Anna, Nowak Piotr J, Nowak Dariusz
Radiation Protection, University Hospital No 2, Medical University of Lodz, Lodz, Poland.
Department of Radiological and Isotopic Diagnostics and Therapy, Medical University of Lodz, Lodz, Poland.
Luminescence. 2019 Mar;34(2):183-192. doi: 10.1002/bio.3591. Epub 2019 Jan 24.
Oxidative reactions can result in the formation of electronically excited species that undergo radiative decay depending on electronic transition from the excited state to the ground state with subsequent ultra-weak photon emission (UPE). We investigated the UPE from the Fe -EDTA (ethylenediaminetetraacetic acid)-AA (ascorbic acid)-H O (hydrogen peroxide) system with a multitube luminometer (Peltier-cooled photon counter, spectral range 380-630 nm). The UPE, of 92.6 μmol/L Fe , 185.2 μmol/L EDTA, 472 μmol/L AA, 2.6 mmol/L H O , reached 1217 ± 118 relative light units during 2 min measurement and was about two times higher (P < 0.001) than the UPE of incomplete systems (Fe -AA-H O , Fe -EDTA-H O , AA-H O ) and medium alone. Substitution of Fe with Cr , Co , Mn or Cu as well as of EDTA with EGTA (ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid) or citrate powerfully inhibited UPE. Experiments with scavengers of reactive oxygen species (dimethyl sulfoxide, mannitol, sodium azide, superoxide dismutase) revealed the dependence of UPE only on hydroxyl radicals. Dimethyl sulfoxide at the concentration of 0.74 mmol/L inhibited UPE by 79 ± 4%. Plant phenolics (ferulic, chlorogenic and caffec acids) at the concentration of 870 μmol/L strongly enhanced UPE by 5-, 13.9- and 46.8-times (P < 0.001), respectively. It is suggested that augmentation of UPE from Fe -EDTA-AA-H O system can be applied for detection of these phytochemicals.
氧化反应可导致形成电子激发态物种,这些物种会经历辐射衰变,这取决于从激发态到基态的电子跃迁以及随后的超微弱光子发射(UPE)。我们使用多管发光计(珀耳帖冷却光子计数器,光谱范围380 - 630纳米)研究了Fe -乙二胺四乙酸(EDTA)-抗坏血酸(AA)-过氧化氢(H₂O₂)体系的超微弱光子发射。对于92.6 μmol/L的Fe、185.2 μmol/L的EDTA、472 μmol/L的AA、2.6 mmol/L的H₂O₂,在2分钟的测量过程中,超微弱光子发射达到了1217 ± 118相对光单位,并且比不完全体系(Fe - AA - H₂O₂、Fe - EDTA - H₂O₂、AA - H₂O₂)以及单独的介质的超微弱光子发射高出约两倍(P < 0.001)。用Cr³⁺、Co²⁺、Mn²⁺或Cu²⁺替代Fe以及用乙二醇双(β - 氨基乙醚)- N,N,N',N'-四乙酸(EGTA)或柠檬酸盐替代EDTA会强烈抑制超微弱光子发射。使用活性氧清除剂(二甲基亚砜、甘露醇、叠氮化钠、超氧化物歧化酶)进行的实验表明,超微弱光子发射仅依赖于羟基自由基。浓度为0.74 mmol/L的二甲基亚砜使超微弱光子发射降低了79 ± 4%。浓度为870 μmol/L的植物酚类物质(阿魏酸、绿原酸和咖啡酸)分别使超微弱光子发射强烈增强了5倍、13.9倍和46.8倍(P < 0.001)。有人提出,增强Fe - EDTA - AA - H₂O₂体系的超微弱光子发射可用于检测这些植物化学物质。