Biomechanics Group, Institute for Bio-Economy & Agri-Technology, Centre for Research & Technology Hellas (CERTH), 38333 Volos, Greece.
Université Paris-Est, Laboratoire Navier, UMR 8205, CNRS, ENPC, IFSTTAR, F-77455 Marne-la-Vallée, France.
J Mech Behav Biomed Mater. 2019 Apr;92:97-117. doi: 10.1016/j.jmbbm.2018.12.030. Epub 2018 Dec 27.
A novel multiscale modeling framework for skeletal muscles based on analytical and numerical homogenization methods is presented to study the mechanical muscle response at finite strains under three-dimensional loading conditions. First an analytical microstructure-based constitutive model is developed and numerically implemented in a general purpose finite element program. The analytical model takes into account explicitly the volume fractions, the material properties, and the spatial distribution of muscle's constituents by using homogenization techniques to bridge the different length scales of the muscle structure. Next, a numerical homogenization model is developed using periodic eroded Voronoi tessellation to virtually represent skeletal muscle microstructures. The eroded Voronoi unit cells are then resolved by finite element simulations and are used to assess the analytical homogenization model. The material parameters of the analytical model are identified successfully by use of available experimental data. The analytical model is found to be in very good agreement with the numerical model for the full range of loadings, and a wide range of different volume fractions and heterogeneity contrasts between muscle's constituents. A qualitative application of the model on fusiform and pennate muscle structures shows its efficiency to examine the effect of muscle fiber concentration variations in an organ-scale model simulation.
提出了一种基于分析和数值均匀化方法的新型骨骼肌肉多尺度建模框架,以研究三维载荷下有限应变下的机械肌肉响应。首先,开发了一种基于分析微观结构的本构模型,并在通用有限元程序中进行了数值实现。该分析模型通过均匀化技术明确考虑了肌肉成分的体积分数、材料特性和空间分布,以桥接肌肉结构的不同长度尺度。接下来,使用周期性侵蚀 Voronoi 细分法开发了数值均匀化模型,以虚拟表示骨骼肌肉微观结构。侵蚀的 Voronoi 单胞然后通过有限元模拟进行求解,并用于评估分析均匀化模型。通过使用可用的实验数据,成功地确定了分析模型的材料参数。分析模型与数值模型在整个加载范围内以及在肌肉成分之间的广泛不同体积分数和异质性对比范围内都非常吻合。该模型在梭形和羽状肌肉结构上的定性应用表明,它能够有效地检查在器官尺度模型模拟中肌肉纤维浓度变化的影响。