Suppr超能文献

模拟细胞外基质和细胞对整块肌肉力学的贡献。

Modelling extracellular matrix and cellular contributions to whole muscle mechanics.

机构信息

Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada.

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.

出版信息

PLoS One. 2021 Apr 2;16(4):e0249601. doi: 10.1371/journal.pone.0249601. eCollection 2021.

Abstract

Skeletal muscle tissue has a highly complex and heterogeneous structure comprising several physical length scales. In the simplest model of muscle tissue, it can be represented as a one dimensional nonlinear spring in the direction of muscle fibres. However, at the finest level, muscle tissue includes a complex network of collagen fibres, actin and myosin proteins, and other cellular materials. This study shall derive an intermediate physical model which encapsulates the major contributions of the muscle components to the elastic response apart from activation-related along-fibre responses. The micro-mechanical factors in skeletal muscle tissue (eg. connective tissue, fluid, and fibres) can be homogenized into one material aggregate that will capture the behaviour of the combination of material components. In order to do this, the corresponding volume fractions for each type of material need to be determined by comparing the stress-strain relationship for a volume containing each material. This results in a model that accounts for the micro-mechanical features found in muscle and can therefore be used to analyze effects of neuro-muscular diseases such as cerebral palsy or muscular dystrophies. The purpose of this study is to construct a model of muscle tissue that, through choosing the correct material parameters based on experimental data, will accurately capture the mechanical behaviour of whole muscle. This model is then used to look at the impacts of the bulk modulus and material parameters on muscle deformation and strain energy-density distributions.

摘要

骨骼肌组织具有高度复杂和异质的结构,包括几个物理长度尺度。在肌肉组织的最简单模型中,它可以表示为沿肌纤维方向的一维非线性弹簧。然而,在最细的水平上,肌肉组织包括胶原纤维、肌动蛋白和肌球蛋白蛋白以及其他细胞物质的复杂网络。本研究旨在推导一个中间物理模型,该模型除了与激活相关的沿纤维反应之外,还包含了肌肉成分对弹性响应的主要贡献。骨骼肌组织中的微观力学因素(例如结缔组织、流体和纤维)可以均匀化为一个材料集合体,该集合体将捕获材料成分组合的行为。为此,需要通过比较每种材料的体积包含的体积的应力-应变关系来确定每种材料的相应体积分数。这导致了一个模型,该模型考虑了肌肉中发现的微观力学特征,因此可以用于分析脑瘫或肌肉营养不良等神经肌肉疾病的影响。本研究的目的是构建一种肌肉组织模型,该模型通过根据实验数据选择正确的材料参数,可以准确地捕捉整个肌肉的力学行为。然后,该模型用于研究体积模量和材料参数对肌肉变形和应变能密度分布的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda1/8018661/e912658dd7c3/pone.0249601.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验