Suppr超能文献

构象灵活性和抑制剂与未磷酸化的白细胞介素-1 受体相关激酶 4(IRAK4)的结合。

Conformational flexibility and inhibitor binding to unphosphorylated interleukin-1 receptor-associated kinase 4 (IRAK4).

机构信息

From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.

the Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, and.

出版信息

J Biol Chem. 2019 Mar 22;294(12):4511-4519. doi: 10.1074/jbc.RA118.005428. Epub 2019 Jan 24.

Abstract

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a key player in innate immune and inflammatory responses, performing a critical role in signal transduction downstream of Toll-like receptors and interleukin-1 (IL-1) receptors. Upon ligand binding and via its N-terminal death domain, IRAK4 is recruited to an oligomeric receptor that is proximal to the Myddosome signaling complex, inducing IRAK4 kinase domain dimerization, autophosphorylation, and activation. To date, all known IRAK4 structures are in the active conformation, precluding a good understanding of IRAK4's conformational dynamics. To address this issue, here we first solved three crystal structures of the IRAK4 kinase domain (at ≤2.6 Å resolution), in its unphosphorylated, inactive state bound to either the ATP analog AMP-PNP or to one of the two small-molecule inhibitors JH-I-25 and JH-I-17. The structures disclosed that although the structure in complex with AMP-PNP is in an "αC-out" inactive conformation, those in complex with type I inhibitors assume an active "Asp-Phe-Gly (DFG)-in" and "αC-in" conformation. The ability of unphosphorylated IRAK4 to take on variable conformations prompted us to screen for small-molecule inhibitors that bind preferentially to unphosphorylated IRAK4, leading to the identification of ponatinib and HG-12-6. Solving the structures of unphosphorylated IRAK4 in complex with these two inhibitors, we found that they both bind as type II inhibitors with IRAK4 in a "DFG-out" conformation. Collectively, these structures reveal conformational flexibility of unphosphorylated IRAK4 and provide unexpected insights into the potential use of small molecules to modulate IRAK4 activity in cancer, autoimmunity, and inflammation.

摘要

白细胞介素-1 受体相关激酶 4(IRAK4)是先天免疫和炎症反应的关键因子,在 Toll 样受体和白细胞介素-1(IL-1)受体下游的信号转导中发挥关键作用。配体结合后,通过其 N 端死亡结构域,IRAK4 被募集到靠近 Myddosome 信号复合物的寡聚受体上,诱导 IRAK4 激酶结构域二聚化、自身磷酸化和激活。迄今为止,所有已知的 IRAK4 结构都处于活性构象,这使得人们难以很好地理解 IRAK4 的构象动力学。为了解决这个问题,我们首先解决了 IRAK4 激酶结构域的三个晶体结构(分辨率≤2.6Å),处于未磷酸化的、无活性状态,分别与 ATP 类似物 AMP-PNP 或两种小分子抑制剂 JH-I-25 和 JH-I-17 结合。这些结构表明,尽管与 AMP-PNP 结合的结构处于“αC 外”无活性构象,但与 I 型抑制剂结合的结构则呈现出活性的“天冬氨酸-苯丙氨酸-甘氨酸(DFG)内”和“αC 内”构象。未磷酸化的 IRAK4 能够呈现出不同的构象,这促使我们筛选出优先与未磷酸化的 IRAK4 结合的小分子抑制剂,从而鉴定出 ponatinib 和 HG-12-6。我们解决了与这两种抑制剂结合的未磷酸化 IRAK4 的结构,发现它们都以 II 型抑制剂的形式与 IRAK4 结合,处于“DFG 外”构象。总的来说,这些结构揭示了未磷酸化的 IRAK4 的构象灵活性,并为利用小分子调节 IRAK4 在癌症、自身免疫和炎症中的活性提供了意想不到的见解。

相似文献

1
Conformational flexibility and inhibitor binding to unphosphorylated interleukin-1 receptor-associated kinase 4 (IRAK4).
J Biol Chem. 2019 Mar 22;294(12):4511-4519. doi: 10.1074/jbc.RA118.005428. Epub 2019 Jan 24.
2
Crystal structure of human IRAK1.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13507-13512. doi: 10.1073/pnas.1714386114. Epub 2017 Dec 5.
3
IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly.
Mol Cell. 2014 Sep 18;55(6):891-903. doi: 10.1016/j.molcel.2014.08.006. Epub 2014 Sep 4.
4
Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a dual role in myddosome formation and Toll-like receptor signaling.
J Biol Chem. 2018 Sep 28;293(39):15195-15207. doi: 10.1074/jbc.RA118.003314. Epub 2018 Aug 3.
5
Structural dynamic analysis of apo and ATP-bound IRAK4 kinase.
Sci Rep. 2014 Jul 18;4:5748. doi: 10.1038/srep05748.
6
Mechanism of dysfunction of human variants of the IRAK4 kinase and a role for its kinase activity in interleukin-1 receptor signaling.
J Biol Chem. 2018 Sep 28;293(39):15208-15220. doi: 10.1074/jbc.RA118.003831. Epub 2018 Aug 16.
9
Deciphering the intrinsic dynamics of unphosphorylated IRAK4 kinase bound to type I and type II inhibitors.
Comput Biol Med. 2023 Jun;160:106978. doi: 10.1016/j.compbiomed.2023.106978. Epub 2023 Apr 27.
10
IRAK4 kinase activity controls Toll-like receptor-induced inflammation through the transcription factor IRF5 in primary human monocytes.
J Biol Chem. 2017 Nov 10;292(45):18689-18698. doi: 10.1074/jbc.M117.796912. Epub 2017 Sep 18.

引用本文的文献

1
Unveiling the Mechanistic Impact of Mutations F2004C/V in the ROS1 Kinase Domain.
ACS Omega. 2025 May 30;10(22):22837-22846. doi: 10.1021/acsomega.5c00072. eCollection 2025 Jun 10.
2
Discovery of IRAK4 Inhibitors (Zabedosertib) and .
J Med Chem. 2024 Jan 25;67(2):1225-1242. doi: 10.1021/acs.jmedchem.3c01714. Epub 2024 Jan 16.
4
Tolerogenic dendritic cells and TLR4/IRAK4/NF-κB signaling pathway in allergic rhinitis.
Front Immunol. 2023 Oct 17;14:1276512. doi: 10.3389/fimmu.2023.1276512. eCollection 2023.
5
Analysis of the ERK Pathway Cysteinome for Targeted Covalent Inhibition of RAF and MEK Kinases.
J Chem Inf Model. 2023 Apr 24;63(8):2483-2494. doi: 10.1021/acs.jcim.3c00014. Epub 2023 Apr 6.
6
Structural and biochemical basis of Arabidopsis FERONIA receptor kinase-mediated early signaling initiation.
Plant Commun. 2023 Jul 10;4(4):100559. doi: 10.1016/j.xplc.2023.100559. Epub 2023 Feb 11.
7
Structural analysis of receptor-like kinase SOBIR1 reveals mechanisms that regulate its phosphorylation-dependent activation.
Plant Commun. 2022 Jan 19;3(2):100301. doi: 10.1016/j.xplc.2022.100301. eCollection 2022 Mar 14.
8
Network Pharmacology- and Molecular Docking-Based Identification of Potential Phytocompounds from in the Treatment of Inflammation.
Evid Based Complement Alternat Med. 2022 Jan 31;2022:8037488. doi: 10.1155/2022/8037488. eCollection 2022.
9
Kincore: a web resource for structural classification of protein kinases and their inhibitors.
Nucleic Acids Res. 2022 Jan 7;50(D1):D654-D664. doi: 10.1093/nar/gkab920.
10
Dimeric Structure of the Pseudokinase IRAK3 Suggests an Allosteric Mechanism for Negative Regulation.
Structure. 2021 Mar 4;29(3):238-251.e4. doi: 10.1016/j.str.2020.11.004. Epub 2020 Nov 24.

本文引用的文献

1
Identification of quinazoline based inhibitors of IRAK4 for the treatment of inflammation.
Bioorg Med Chem Lett. 2017 Jun 15;27(12):2721-2726. doi: 10.1016/j.bmcl.2017.04.050. Epub 2017 Apr 18.
3
Efforts towards the optimization of a bi-aryl class of potent IRAK4 inhibitors.
Bioorg Med Chem Lett. 2016 Sep 1;26(17):4250-5. doi: 10.1016/j.bmcl.2016.07.048. Epub 2016 Jul 22.
4
Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes.
Pharmacol Res. 2016 Jan;103:26-48. doi: 10.1016/j.phrs.2015.10.021. Epub 2015 Oct 31.
5
Discovery and Structure Enabled Synthesis of 2,6-Diaminopyrimidin-4-one IRAK4 Inhibitors.
ACS Med Chem Lett. 2015 Jul 12;6(8):942-7. doi: 10.1021/acsmedchemlett.5b00279. eCollection 2015 Aug 13.
6
Discovery of 5-Amino-N-(1H-pyrazol-4-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide Inhibitors of IRAK4.
ACS Med Chem Lett. 2015 Apr 20;6(6):683-8. doi: 10.1021/acsmedchemlett.5b00107. eCollection 2015 Jun 11.
7
Potent and Selective Amidopyrazole Inhibitors of IRAK4 That Are Efficacious in a Rodent Model of Inflammation.
ACS Med Chem Lett. 2015 May 12;6(6):677-82. doi: 10.1021/acsmedchemlett.5b00106. eCollection 2015 Jun 11.
8
Discovery and hit-to-lead optimization of 2,6-diaminopyrimidine inhibitors of interleukin-1 receptor-associated kinase 4.
Bioorg Med Chem Lett. 2015 May 1;25(9):1836-41. doi: 10.1016/j.bmcl.2015.03.043. Epub 2015 Mar 28.
9
IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly.
Mol Cell. 2014 Sep 18;55(6):891-903. doi: 10.1016/j.molcel.2014.08.006. Epub 2014 Sep 4.
10
The interleukin-1 family: back to the future.
Immunity. 2013 Dec 12;39(6):1003-18. doi: 10.1016/j.immuni.2013.11.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验