From the Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.
From the Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
J Biol Chem. 2019 Mar 22;294(12):4488-4497. doi: 10.1074/jbc.RA118.006944. Epub 2019 Jan 24.
DNA damage-mediated activation of extracellular signal-regulated kinase (ERK) can regulate both cell survival and cell death. We show here that ERK activation in this context is biphasic and that early and late activation events are mediated by distinct upstream signals that drive cell survival and apoptosis, respectively. We identified the nuclear kinase mitogen-sensitive kinase 1 (MSK1) as a downstream target of both early and late ERK activation. We also observed that activation of ERK→MSK1 up to 4 h after DNA damage depends on epidermal growth factor receptor (EGFR), as EGFR or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)/ERK inhibitors or short hairpin RNA-mediated MSK1 depletion enhanced cell death. This prosurvival response was partially mediated through enhanced DNA repair, as EGFR or MEK/ERK inhibitors delayed DNA damage resolution. In contrast, the second phase of ERK→MSK1 activation drove apoptosis and required protein kinase Cδ (PKCδ) but not EGFR. Genetic disruption of PKCδ reduced ERK activation in an irradiation model, as did short hairpin RNA-mediated depletion of PKCδ In both models, PKCδ inhibition preferentially suppressed late activation of ERK. We have shown previously that nuclear localization of PKCδ is necessary and sufficient for apoptosis. Here we identified a nuclear PKCδ→ERK→MSK1 signaling module that regulates apoptosis. We also show that expression of nuclear PKCδ activates ERK and MSK1, that ERK activation is required for MSK1 activation, and that both ERK and MSK1 activation are required for apoptosis. Our findings suggest that location-specific activation by distinct upstream regulators may enable distinct functional outputs from common signaling pathways.
DNA 损伤介导的细胞外信号调节激酶 (ERK) 的激活可以调节细胞存活和细胞死亡。我们在这里表明,这种情况下的 ERK 激活是双相的,早期和晚期激活事件分别由不同的上游信号介导,这些信号分别驱动细胞存活和细胞凋亡。我们确定了核激酶丝裂原敏感激酶 1 (MSK1) 是早期和晚期 ERK 激活的下游靶标。我们还观察到,DNA 损伤后 4 小时内 ERK→MSK1 的激活依赖于表皮生长因子受体 (EGFR),因为 EGFR 或丝裂原激活蛋白激酶/细胞外信号调节激酶激酶 (MEK)/ERK 抑制剂或短发夹 RNA 介导的 MSK1 耗竭增强了细胞死亡。这种促存活反应部分是通过增强 DNA 修复介导的,因为 EGFR 或 MEK/ERK 抑制剂延迟了 DNA 损伤的解决。相比之下,ERK→MSK1 的第二阶段激活驱动细胞凋亡,需要蛋白激酶 Cδ (PKCδ),但不需要 EGFR。PKCδ 的遗传破坏减少了辐照模型中的 ERK 激活,短发夹 RNA 介导的 PKCδ 耗竭也是如此。在这两种模型中,PKCδ 抑制剂优先抑制 ERK 的晚期激活。我们之前已经表明,PKCδ 的核定位对于凋亡是必要和充分的。在这里,我们确定了一个核 PKCδ→ERK→MSK1 信号模块,它调节细胞凋亡。我们还表明,核 PKCδ 的表达激活 ERK 和 MSK1,ERK 激活是 MSK1 激活所必需的,ERK 和 MSK1 的激活都需要凋亡。我们的研究结果表明,通过不同的上游调节剂进行位置特异性激活可能使共同信号通路具有不同的功能输出。