Isa Diyana Mohd, Chin Sek Peng, Chong Wei Lim, Zain Sharifuddin M, Rahman Noorsaadah Abd, Lee Vannajan Sanghiran
Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
J Biol Phys. 2019 Mar;45(1):63-76. doi: 10.1007/s10867-018-9515-6. Epub 2019 Jan 24.
In this study, we investigate the binding interactions of two synthetic antiviral peptides (DET2 and DET4) on type II dengue virus (DENV2) envelope protein domain III. These two antiviral peptides are designed based on the domain III of the DENV2 envelope protein, which has shown significant inhibition activity in previous studies and can be potentially modified further to be active against all dengue strains. Molecular docking was performed using AutoDock Vina and the best-ranked peptide-domain III complex was further explored using molecular dynamics simulations. Molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) was used to calculate the relative binding free energies and to locate the key residues of peptide-protein interactions. The predicted binding affinity correlated well with the previous experimental studies. DET4 outperformed DET2 and is oriented within the binding site through favorable vdW and electrostatic interactions. Pairwise residue decomposition analysis has revealed several key residues that contribute to the binding of these peptides. Residues in DET2 interact relatively lesser with the domain III compared to DET4. Dynamic cross-correlation analysis showed that both the DET2 and DET4 trigger different dynamic patterns on the domain III. Correlated motions were seen between the residue pairs of DET4 and the binding site while binding of DET2 results in anti-correlated motion on the binding site. This work showcases the use of computational study in elucidating and explaining the experiment observation on an atomic level.
在本研究中,我们研究了两种合成抗病毒肽(DET2和DET4)与II型登革病毒(DENV2)包膜蛋白结构域III的结合相互作用。这两种抗病毒肽是基于DENV2包膜蛋白的结构域III设计的,该结构域在先前的研究中已显示出显著的抑制活性,并且有可能进一步修饰以对所有登革病毒株具有活性。使用AutoDock Vina进行分子对接,并使用分子动力学模拟进一步探索排名最佳的肽-结构域III复合物。分子力学-泊松-玻尔兹曼表面积(MM-PBSA)用于计算相对结合自由能并定位肽-蛋白质相互作用的关键残基。预测的结合亲和力与先前的实验研究相关性良好。DET4的表现优于DET2,并通过有利的范德华力和静电相互作用定向在结合位点内。成对残基分解分析揭示了几个有助于这些肽结合的关键残基。与DET4相比DET2中的残基与结构域III的相互作用相对较少。动态交叉相关分析表明,DET2和DET4都在结构域III上触发不同的动态模式。在DET4的残基对与结合位点之间观察到相关运动,而DET2的结合导致结合位点上的反相关运动。这项工作展示了计算研究在原子水平上阐明和解释实验观察结果的应用。