Suppr超能文献

候选脱硫地杆菌 TRIP_1 基因组的代谢重建和鉴定厌氧降解菲的关键候选酶。

Metabolic reconstruction of the genome of candidate Desulfatiglans TRIP_1 and identification of key candidate enzymes for anaerobic phenanthrene degradation.

机构信息

Biofilm Centre, Aquatic Microbiology Department, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany.

CEA, DRF, Institut Jacob, Genoscope, Evry, France.

出版信息

Environ Microbiol. 2019 Apr;21(4):1267-1286. doi: 10.1111/1462-2920.14527. Epub 2019 Feb 7.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed pollutants. As oxygen is rapidly depleted in water-saturated PAH-contaminated sites, anaerobic microorganisms are crucial for their consumption. Here, we report the metabolic pathway for anaerobic degradation of phenanthrene by a sulfate-reducing enrichment culture (TRIP) obtained from a natural asphalt lake. The dominant organism of this culture belongs to the Desulfobacteraceae family of Deltaproteobacteria and genome-resolved metagenomics led to the reconstruction of its genome along with a handful of genomes from lower abundance bacteria. Proteogenomic analyses confirmed metabolic capabilities for dissimilatory sulfate reduction and indicated the presence of the Embden-Meyerhof-Parnas pathway, a complete tricarboxylic acid cycle as well as a complete Wood-Ljungdahl pathway. Genes encoding enzymes putatively involved in the degradation of phenanthrene were identified. This includes two gene clusters encoding a multisubunit carboxylase complex likely involved in the activation of phenanthrene, as well as genes encoding reductases potentially involved in subsequent ring dearomatization and reduction steps. The predicted metabolic pathways were corroborated by transcriptome and proteome analyses, and provide the first insights into the metabolic pathway responsible for the anaerobic degradation of three-ringed PAHs.

摘要

多环芳烃(PAHs)是广泛分布的污染物。由于在水饱和的多环芳烃污染场所中氧气迅速耗尽,因此厌氧微生物对于它们的消耗至关重要。在这里,我们报告了从天然沥青湖中获得的硫酸盐还原富集培养物(TRIP)对菲进行厌氧降解的代谢途径。该培养物的主要生物属于δ变形菌的脱硫杆菌科,基因组解析宏基因组学导致了其基因组的重建以及少数丰度较低的细菌的基因组。蛋白质组学分析证实了异化硫酸盐还原的代谢能力,并表明存在Embden-Meyerhof-Parnas 途径、完整的三羧酸循环以及完整的 Wood-Ljungdahl 途径。鉴定了编码可能参与菲降解的酶的基因。这包括两个基因簇,编码一个多亚基羧化酶复合物,可能参与菲的激活,以及编码可能参与随后的环去芳构化和还原步骤的还原酶的基因。预测的代谢途径通过转录组和蛋白质组分析得到了证实,并首次深入了解了负责三苯环 PAHs 厌氧降解的代谢途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc74/6849830/3df508c963e1/EMI-21-1267-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验