Suppr超能文献

手性等离子体纳米晶体用于产生热电子:迈向偏振敏感光化学。

Chiral Plasmonic Nanocrystals for Generation of Hot Electrons: Toward Polarization-Sensitive Photochemistry.

机构信息

Institute of Fundamental and Frontier Sciences , University of Electronic Science and Technology of China , Chengdu 610054 , China.

Department of Physics and Astronomy , Ohio University , Athens , Ohio 45701 , United States.

出版信息

Nano Lett. 2019 Feb 13;19(2):1395-1407. doi: 10.1021/acs.nanolett.8b05179. Epub 2019 Feb 1.

Abstract

The use of biomaterials, with techniques such as DNA-directed assembly or biodirected synthesis, can surpass top-down fabrication techniques in creating plasmonic superstructures in terms of spatial resolution, range of functionality, and fabrication speed. In particular, by enabling a very precise placement of nanoparticles in a bioassembled complex or through the controlled biodirected shaping of single nanoparticles, plasmonic nanocrystals can show remarkably strong circular dichroism (CD) signals. We show that chiral bioplasmonic assemblies and single nanocrystals can enable polarization-sensitive photochemistry based on the generation of energetic (hot) electrons. It is now established that hot plasmonic electrons can induce surface photochemistry or even reshape plasmonic nanocrystals. We show that merging chiral plasmonic nanocrystal systems and the hot-election generation effect offers unique possibilities in photochemistry, such as polarization-sensitive photochemistry promoting nonchiral molecular reactions, chiral photoinduced growth of a colloid at the atomic level, and chiral photochemical destruction of chiral nanocrystals. In contrast, for chiral molecular systems, the equivalent of the described effects is challenging to observe because molecular species typically exhibit very small CD signals. Moreover, we compare our findings with traditional chiral photochemistry at the molecular level, identifying new, different regimes for chiral photochemistry with possibilities that are unique for plasmonic colloidal systems. In this study, we bring together the concept of hot-electron generation and the field of chiral colloidal plasmonics. Using chiral plasmonic nanorod complexes as a model system, we demonstrate remarkably strong CD in both optical extinction and generation rates of hot electrons. Studying the regime of steady-state excitation, we discuss the influence of geometrical and material parameters on the chiral effects involved in the generation of hot electrons. Optical chirality and the chiral hot-electron response in the nanorod dimers result from complex interparticle interactions, which can appear in the weak coupling regime or in the form of Rabi splitting. Regarding practical applications, our study suggests interesting opportunities in polarization-sensitive photochemistry, in chiral recognition or separation, and in promoting chiral crystal growth at the nanoscale.

摘要

生物材料的使用,结合 DNA 定向组装或生物导向合成等技术,可以在空间分辨率、功能范围和制造速度方面超越自上而下的制造技术,从而在创建等离子体超结构方面取得突破。特别是,通过能够将纳米颗粒非常精确地放置在生物组装复合物中,或者通过控制单个纳米颗粒的生物导向成型,可以使等离子体纳米晶体表现出非常强的圆二色性(CD)信号。我们表明,手性生物等离子体组装体和单个纳米晶体可以基于产生高能(热)电子,实现对偏振敏感的光化学。现在已经确立,热等离子体电子可以诱导表面光化学,甚至重塑等离子体纳米晶体。我们表明,合并手性等离子体纳米晶体系统和热电子产生效应为光化学提供了独特的可能性,例如偏振敏感的光化学促进非手性分子反应、手性光诱导胶体在原子水平上的生长以及手性光化学破坏手性纳米晶体。相比之下,对于手性分子系统,观察到描述的等效效果具有挑战性,因为分子物种通常表现出非常小的 CD 信号。此外,我们将我们的发现与分子水平的传统手性光化学进行了比较,确定了具有独特等离子体胶体系统可能性的手性光化学的新的、不同的范围。在这项研究中,我们将热电子产生的概念与手性胶体等离子体学领域结合起来。使用手性等离子体纳米棒复合物作为模型系统,我们在光消光和热电子产生速率方面都证明了非常强的 CD。在稳态激发的研究中,我们讨论了几何和材料参数对手性纳米棒二聚体中热电子产生所涉及的手性效应的影响。纳米棒二聚体的光学手性和手性热电子响应源自复杂的粒子间相互作用,这些相互作用可以出现在弱耦合或拉比分裂的形式中。就实际应用而言,我们的研究在手性敏感光化学、手性识别或分离以及在纳米尺度上促进手性晶体生长方面提出了有趣的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验