Mascaretti Luca, Schirato Andrea, Fornasiero Paolo, Boltasseva Alexandra, Shalaev Vladimir M, Alabastri Alessandro, Naldoni Alberto
Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic.
Department of Physics, Politecnico Di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy; and Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
Nanophotonics. 2022 May 23;11(13):3035-3056. doi: 10.1515/nanoph-2022-0073. eCollection 2022 Jun.
Solar-thermal technologies for converting chemicals using thermochemistry require extreme light concentration. Exploiting plasmonic nanostructures can dramatically increase the reaction rates by providing more efficient solar-to-heat conversion by broadband light absorption. Moreover, hot-carrier and local field enhancement effects can alter the reaction pathways. Such discoveries have boosted the field of photothermal catalysis, which aims at driving industrially-relevant chemical reactions using solar illumination rather than conventional heat sources. Nevertheless, only large arrays of plasmonic nano-units on a substrate, i.e., plasmonic metasurfaces, allow a quasi-unitary and broadband solar light absorption within a limited thickness (hundreds of nanometers) for practical applications. Through moderate light concentration (∼10 Suns), metasurfaces reach the same temperatures as conventional thermochemical reactors, or plasmonic nanoparticle bed reactors reach under ∼100 Suns. Plasmonic metasurfaces, however, have been mostly neglected so far for applications in the field of photothermal catalysis. In this Perspective, we discuss the potentialities of plasmonic metasurfaces in this emerging area of research. We present numerical simulations and experimental case studies illustrating how broadband absorption can be achieved within a limited thickness of these nanostructured materials. The approach highlights the synergy among different enhancement effects related to the ordered array of plasmonic units and the efficient heat transfer promoting faster dynamics than thicker structures (such as powdered catalysts). We foresee that plasmonic metasurfaces can play an important role in developing modular-like structures for the conversion of chemical feedstock into fuels without requiring extreme light concentrations. Customized metasurface-based systems could lead to small-scale and low-cost decentralized reactors instead of large-scale, infrastructure-intensive power plants.
利用热化学转化化学品的太阳能热技术需要极高的光浓度。利用等离子体纳米结构可以通过宽带光吸收提供更高效的太阳能到热能的转换,从而显著提高反应速率。此外,热载流子和局部场增强效应可以改变反应路径。这些发现推动了光热催化领域的发展,该领域旨在利用太阳光照射而非传统热源来驱动与工业相关的化学反应。然而,对于实际应用而言,只有在基底上的大量等离子体纳米单元阵列,即等离子体超表面,才能在有限的厚度(数百纳米)内实现准单一和宽带的太阳光吸收。通过适度的光浓度(约10个太阳常数),超表面能达到与传统热化学反应器相同的温度,或者等离子体纳米颗粒床反应器在约100个太阳常数下才能达到的温度。然而,到目前为止,等离子体超表面在光热催化领域的应用大多被忽视了。在这篇观点文章中,我们讨论了等离子体超表面在这个新兴研究领域的潜力。我们展示了数值模拟和实验案例研究,说明了如何在这些纳米结构材料的有限厚度内实现宽带吸收。该方法突出了与等离子体单元有序阵列相关的不同增强效应之间的协同作用,以及促进比更厚结构(如粉末催化剂)更快动力学的高效热传递。我们预计,等离子体超表面在开发用于将化学原料转化为燃料的模块化结构方面可以发挥重要作用,而无需极高的光浓度。基于定制超表面的系统可能会带来小规模、低成本的分散式反应器,而不是大规模、基础设施密集型的发电厂。