Shanghai Innovation Center of Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Chin Med J (Engl). 2019 Feb 5;132(3):319-328. doi: 10.1097/CM9.0000000000000066.
Eucommia ulmoides Oliv. is a medicinal plant native to China, with its bark (Eucommiae Cortex) traditionally being used for medicinal purposes. Previous research has shown that Eucommia male flowers can exert anti-inflammatory, analgesic, antibacterial, and other pharmacological effects, including immune regulation. This study explored the anti-inflammatory effects of the 70% ethanol extract of male flowers (EF) of E. ulmoides in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and LPS-administered mice.
Cytotoxicity of EF for RAW 264.7 cells was investigated using Cell Counting Kit-8. The production of proinflammatory mediators, nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 was determined using enzyme-linked immunosorbent assays. IL-17, IL-23, and IL-10 mRNA levels were determined using quantitative real-time polymerase chain reaction. Activation of the nuclear factor (NF)-κB pathway in RAW 264.7 cells was investigated via Western blotting. In vivo anti-inflammatory effects of EF were studied in an LPS-induced acute inflammation mouse model by analyzing lung tissue histopathology, serum TNF-α and IL-6 levels, and myeloperoxidase (MPO) activity in lung tissue.
EF showed no significant cytotoxicity at concentrations from 10 to 60 μg/mL (cell viability > 80%) in the CCK-8 cell viability assay. EF inhibited the RAW 264.7 cell proliferation (EF 60 μg/mL, 120 μg/mL, and 250 μg/mL vs. negative control: 87.31 ± 2.39% vs. 100.00 ± 2.50%, P = 0.001; 79.01 ± 2.56 vs. 100.00 ± 2.50%, P < 0.001; and 64.83 ± 2.50 vs. 100.00 ± 2.50%, P < 0.001), suppressed NO (EF 20 μg/mL and 30 μg/mL vs. LPS only, 288.81 ± 38.01 vs. 447.68 ± 19.07 μmol/L, P = 0.004; and 158.80 ± 45.14 vs. 447.68 ± 19.07 μmol/L, P < 0.001), TNF-α (LPS+EF vs. LPS only, 210.20 ± 13.85 vs. 577.70 ± 5.35 pg/mL, P < 0.001), IL-1β (LPS+EF vs. LPS only, 193.30 ± 10.80 vs. 411.03 ± 42.28 pg/mL, P < 0.001), and IL-6 (LPS+EF vs. LPS only, 149.67 ± 11.60 vs. 524.80 ± 6.24 pg/mL, P < 0.001) secretion, and downregulated the mRNA expression of IL-17 (LPS+EF vs. LPS only, 0.23 ± 0.02 vs. 0.43 ± 0.12, P < 0.001), IL-23 (LPS+EF vs. LPS only, 0.29 ± 0.01 vs. 0.42 ± 0.06, P=0.002), and IL-10 (LPS+EF vs. LPS only, 0.30 ± 0.01 vs. 0.47 ± 0.01, P=0.008) in LPS-stimulated RAW 264.7 cells. EF inhibited the LPS-induced NF-κB p65 (LPS+EF 20 μg/mL and 30 μg/mL vs. LPS only: 0.78 ± 0.06 vs. 1.17 ± 0.08, P < 0.001; and 0.90 ± 0.06 vs. 1.17 ± 0.08, P =0.002) and inhibitor of kappa B (IκBα) phosphorylation (LPS+EF 20 μg/mL and 30 μg/mL vs. LPS only: 0.25 ± 0.01 vs. 0.63 ± 0.03, P < 0.001; and 0.31 ± 0.01 vs. 0.63 ± 0.03, P < 0.001), LPS+EF 30 μg/mL inhibited IκB kinase (IKKα/β) phosphorylation (LPS+EF 30 μg/mL vs. LPS only, 1.12 ± 0.14 vs. 1.71 ± 0.25, P = 0.002) in RAW 264.7 cells. Furthermore, EF 10 mg/kg and EF 20 mg/kg inhibited lung tissue inflammation in vivo and suppressed the serum TNF-α (LPS+EF 10 mg/kg and 20 mg/kg vs. LPS only, 199.99 ± 186.49 vs. 527.90 ± 263.93 pg/mL, P=0.001; and 260.56 ± 175.83 vs. 527.90 ± 263.93 pg/mL, P = 0.005), and IL-6 (LPS+EF 10 mg/kg and 20 mg/kg vs. LPS only, 41.26 ± 30.42 vs. 79.45 ± 14.16 pg/ ml, P = 0.011; and 42.01 ± 26.26 vs. 79.45 ± 14.16 pg/mL, P = 0.012) levels and MPO (LPS+EF 10 mg/kg and 20 mg/kg vs. LPS only, 3.19 ± 1.78 vs. 5.39 ± 1.51 U/g, P = 0.004; and 3.32 ± 1.57 vs. 5.39 ± 1.51 U/g, P = 0.006) activity in lung tissue.
EF could effectively inhibit the expression of inflammatory factors and overactivation of neutrophils. Further investigation is needed to evaluate its potential for anti-inflammation therapy.
杜仲(Eucommia ulmoides Oliv.)是一种原产于中国的药用植物,其树皮(杜仲皮)传统上被用于药用。先前的研究表明,杜仲雄花具有抗炎、镇痛、抗菌等多种药理作用,包括免疫调节。本研究探讨了 70%乙醇提取物杜仲雄花(Eucommia ulmoides)在脂多糖(LPS)刺激的 RAW 264.7 细胞和 LPS 给药小鼠中的抗炎作用。
采用细胞计数试剂盒-8(Cell Counting Kit-8)检测 EF 对 RAW 264.7 细胞的细胞毒性。采用酶联免疫吸附试验(Enzyme-linked immunosorbent assay)测定一氧化氮(NO)、肿瘤坏死因子(TNF)-α、白细胞介素(IL)-1β和 IL-6 等促炎介质的产生。采用实时定量聚合酶链反应(Quantitative real-time polymerase chain reaction)测定 IL-17、IL-23 和 IL-10 mRNA 水平。采用 Western blot 法检测 NF-κB 通路在 RAW 264.7 细胞中的激活情况。采用 LPS 诱导的急性炎症小鼠模型研究 EF 的体内抗炎作用,通过分析肺组织病理、血清 TNF-α和 IL-6 水平以及肺组织髓过氧化物酶(Myeloperoxidase,MPO)活性来评估 EF 的作用。
在 CCK-8 细胞活力测定中,EF 在浓度为 10 至 60μg/ml 时无明显细胞毒性(细胞活力>80%)。EF 抑制 RAW 264.7 细胞增殖(EF 60μg/ml、120μg/ml 和 250μg/ml 与阴性对照相比:87.31±2.39%vs.100.00±2.50%,P=0.001;79.01±2.56%vs.100.00±2.50%,P<0.001;64.83±2.50%vs.100.00±2.50%,P<0.001),抑制 NO(EF 20μg/ml 和 30μg/ml 与 LPS 相比:288.81±38.01μmol/L vs.447.68±19.07μmol/L,P=0.004;158.80±45.14μmol/L vs.447.68±19.07μmol/L,P<0.001)、TNF-α(LPS+EF 与 LPS 相比:210.20±13.85pg/mL vs.577.70±5.35pg/mL,P<0.001)、IL-1β(LPS+EF 与 LPS 相比:193.30±10.80pg/mL vs.411.03±42.28pg/mL,P<0.001)和 IL-6(LPS+EF 与 LPS 相比:149.67±11.60pg/mL vs.524.80±6.24pg/mL,P<0.001)的分泌,并下调 IL-17(LPS+EF 与 LPS 相比:0.23±0.02 vs.0.43±0.12,P<0.001)、IL-23(LPS+EF 与 LPS 相比:0.29±0.01 vs.0.42±0.06,P=0.002)和 IL-10(LPS+EF 与 LPS 相比:0.30±0.01 vs.0.47±0.01,P=0.008)在 LPS 刺激的 RAW 264.7 细胞中的表达。EF 抑制 LPS 诱导的 NF-κB p65(LPS+EF 20μg/ml 和 30μg/ml 与 LPS 相比:0.78±0.06 vs.1.17±0.08,P<0.001;0.90±0.06 vs.1.17±0.08,P=0.002)和 IκBα磷酸化(LPS+EF 20μg/ml 和 30μg/ml 与 LPS 相比:0.25±0.01 vs.0.63±0.03,P<0.001;0.31±0.01 vs.0.63±0.03,P<0.001),EF 30μg/ml 抑制 IKKα/β磷酸化(LPS+EF 30μg/ml 与 LPS 相比:1.12±0.14 vs.1.71±0.25,P=0.002)在 RAW 264.7 细胞中。此外,EF 10mg/kg 和 EF 20mg/kg 抑制体内肺组织炎症,并抑制血清 TNF-α(LPS+EF 10mg/kg 和 20mg/kg 与 LPS 相比:199.99±186.49pg/mL vs.527.90±263.93pg/mL,P=0.001;260.56±175.83pg/mL vs.527.90±263.93pg/mL,P=0.005)和 IL-6(LPS+EF 10mg/kg 和 20mg/kg 与 LPS 相比:41.26±30.42pg/mL vs.79.45±14.16pg/mL,P=0.011;42.01±26.26pg/mL vs.79.45±14.16pg/mL,P=0.012)水平和肺组织 MPO(LPS+EF 10mg/kg 和 20mg/kg 与 LPS 相比:3.19±1.78U/g vs.5.39±1.51U/g,P=0.004;3.32±1.57U/g vs.5.39±1.51U/g,P=0.006)活性。
EF 可有效抑制炎症因子的表达和中性粒细胞的过度激活。需要进一步研究评估其在抗炎治疗中的潜在应用。