受微生物群落对多年冻土解冻响应调节的甲烷动力学。

Methane dynamics regulated by microbial community response to permafrost thaw.

机构信息

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.

Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Queensland, Australia.

出版信息

Nature. 2014 Oct 23;514(7523):478-81. doi: 10.1038/nature13798.

Abstract

Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.

摘要

永久冻土中约含有全球土壤碳的 50%。据认为,永久冻土的融化会导致以甲烷和二氧化碳排放的形式损失土壤碳。由此产生的温室气体排放的积极气候反馈的规模尚不清楚,并且可能在很大程度上取决于微生物群落组成在调节驱动这种生态系统尺度温室气体通量的代谢过程方面的作用,而这种作用仍未被充分了解。在这里,我们表明,随着永久冻土的融化,植被的变化和甲烷排放量的增加与从氢营养型到部分乙酸营养型甲烷生成的转变有关,导致排放的甲烷的 δ(13)C 特征(10-15‰)发生了很大变化。我们使用瑞典北部永久冻土融化的自然景观梯度作为模型来研究微生物群落在调节甲烷循环中的作用,并测试对群落动态的了解是否可以提高在永久冻土损失下预测碳排放的能力。甲烷营养菌 Candidatus 'Methanoflorens stordalenmirensis' 的丰度是甲烷同位素变化的关键预测因子,而甲烷同位素变化又可以预测作为甲烷和二氧化碳排放的碳的比例,这是模拟与全球模型中永久冻土融化相关的气候反馈的一个重要因素。通过表明关键微生物谱系的丰度可用于预测大气中相关的甲烷同位素模式以及在永久冻土融化过程中代谢为甲烷的碳的比例,我们为将不断变化的微生物群落扩展到生态系统同位素动态奠定了基础。我们的研究结果表明,微生物生态学在对全球变化的生态系统尺度响应中可能很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索