Suppr超能文献

在70kHz的超快魔角旋转条件下,通过质子检测的三维固态核磁共振技术测定天然丰度样品中的氮化学位移各向异性。

Determination of the N chemical shift anisotropy in natural abundance samples by proton-detected 3D solid-state NMR under ultrafast MAS of 70 kHz.

作者信息

Rossi Federica, Duong Nghia Tuan, Pandey Manoj Kumar, Chierotti Michele R, Gobetto Roberto, Nishiyama Yusuke

机构信息

Department of Chemistry and NIS Centre, University of Torino, V. P. Giuria 7, Torino, Italy.

RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa, Japan.

出版信息

Magn Reson Chem. 2019 Jun;57(6):294-303. doi: 10.1002/mrc.4841. Epub 2019 Feb 12.

Abstract

Chemical shift anisotropy (CSA) is a sensitive probe of electronic environment at a nucleus, and thus, it offers deeper insights into detailed structural and dynamic properties of different systems, for example, chemical, biological, and materials. Over the years, massive efforts have been made to develop recoupling methods that reintroduce CSA interaction under magic angle spinning (MAS) conditions. Most of them require slow or moderate MAS (≤20 kHz) and isotopically enriched samples. On the other hand, to the best of the authors' knowledge, no C or N CSA recoupling schemes at ultrafast MAS (≥60 kHz) suitable for cost-effective natural abundant samples have been developed. We present here a proton-detected 3D N CS/ N CSA/ H CS correlation experiment which employs H indirect detection for sensitivity enhancement and a γ-encoded -symmetry-based CSA recoupling scheme. In particular, two different symmetries, that is, R8 and R10 , are first tested, in a 2D N CSA/ H CS version, on [U- N]-L-histidine·HCl·H O as a model sample under 70 kHz MAS. Then the 3D experiment is applied on glycyl-L-alanine at natural abundance, resulting in site-resolved N CSA lineshapes from which CSA parameters are retrieved by SIMPSON numerical fittings. We demonstrate that this 3D R-symmetry-based pulse sequence is highly robust with respect to wide-range offset mismatches and weakly dependent to rf inhomogeneity within mis-sets of ±10% from the theoretical value.

摘要

化学位移各向异性(CSA)是原子核电子环境的灵敏探针,因此,它能更深入地洞察不同体系(如化学、生物和材料体系)的详细结构和动力学性质。多年来,人们付出了巨大努力来开发在魔角旋转(MAS)条件下重新引入CSA相互作用的再耦合方法。其中大多数方法需要慢速或中速MAS(≤20 kHz)以及同位素富集样品。另一方面,据作者所知,尚未开发出适用于具有成本效益的天然丰度样品的超快MAS(≥60 kHz)下的碳或氮CSA再耦合方案。我们在此展示一种质子检测的3D氮化学位移(N CS)/氮化学位移各向异性(N CSA)/氢化学位移(H CS)相关实验,该实验采用氢间接检测来提高灵敏度,并采用基于γ编码的 - 对称的CSA再耦合方案。特别地,首先在二维N CSA/H CS版本中,在70 kHz MAS下,以[U - N]-L - 组氨酸·HCl·H₂O作为模型样品,测试了两种不同的对称性,即R8和R10。然后将该3D实验应用于天然丰度的甘氨酰 - L - 丙氨酸,得到位点分辨的N CSA线形,通过SIMPSON数值拟合从中获取CSA参数。我们证明,这种基于3D R - 对称的脉冲序列对于大范围的偏移失配具有高度鲁棒性,并且在偏离理论值±10%的失谐范围内对射频不均匀性的依赖性较弱。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验