Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
J Am Chem Soc. 2011 Nov 23;133(46):18646-55. doi: 10.1021/ja203771a. Epub 2011 Oct 28.
Fast magic angle spinning (MAS) NMR spectroscopy is becoming increasingly important in structural and dynamics studies of biological systems and inorganic materials. Superior spectral resolution due to the efficient averaging of the dipolar couplings can be attained at MAS frequencies of 40 kHz and higher with appropriate decoupling techniques, while proton detection gives rise to significant sensitivity gains, therefore making fast MAS conditions advantageous across the board compared with the conventional slow- and moderate-MAS approaches. At the same time, many of the dipolar recoupling approaches that currently constitute the basis for structural and dynamics studies of solid materials and that are designed for MAS frequencies of 20 kHz and below, fail above 30 kHz. In this report, we present an approach for (1)H-(13)C/(1)H-(15)N heteronuclear dipolar recoupling under fast MAS conditions using R-type symmetry sequences, which is suitable even for fully protonated systems. A series of rotor-synchronized R-type symmetry pulse schemes are explored for the determination of structure and dynamics in biological and organic systems. The investigations of the performance of the various RN(n)(v)-symmetry sequences at the MAS frequency of 40 kHz experimentally and by numerical simulations on [U-(13)C,(15)N]-alanine and [U-(13)C,(15)N]-N-acetyl-valine, revealed excellent performance for sequences with high symmetry number ratio (N/2n > 2.5). Further applications of this approach are presented for two proteins, sparsely (13)C/uniformly (15)N-enriched CAP-Gly domain of dynactin and U-(13)C,(15)N-Tyr enriched C-terminal domain of HIV-1 CA protein. Two-dimensional (2D) and 3D R16(3)(2)-based DIPSHIFT experiments carried out at the MAS frequency of 40 kHz, yielded site-specific (1)H-(13)C/(1)H-(15)N heteronuclear dipolar coupling constants for CAP-Gly and CTD CA, reporting on the dynamic behavior of these proteins on time scales of nano- to microseconds. The R-symmetry-based dipolar recoupling under fast MAS is expected to find numerous applications in studies of protein assemblies and organic solids by MAS NMR spectroscopy.
快速魔角旋转 (MAS) NMR 光谱技术在生物系统和无机材料的结构和动力学研究中变得越来越重要。通过适当的去耦技术,在 MAS 频率为 40 kHz 及更高的情况下,可以获得由于偶极耦合的有效平均而产生的更高的光谱分辨率,同时质子检测会带来显著的灵敏度增益,因此与传统的慢 MAS 和中速 MAS 方法相比,快速 MAS 条件具有全面优势。与此同时,目前构成固体材料结构和动力学研究基础的许多偶极再耦合方法,其设计的 MAS 频率低于 20 kHz,在 30 kHz 以上就会失效。在本报告中,我们提出了一种在快速 MAS 条件下使用 R 型对称序列进行 (1)H-(13)C/(1)H-(15)N 异核偶极再耦合的方法,即使对于完全质子化的系统也适用。探索了一系列转子同步 R 型对称脉冲方案,用于确定生物和有机系统中的结构和动力学。通过实验和数值模拟研究了在 40 kHz MAS 频率下各种 RN(n)(v)-对称序列的性能,结果表明,对于具有高对称数比 (N/2n > 2.5) 的序列,性能非常出色。进一步将该方法应用于两种蛋白质,即 dynactin 的稀疏 (13)C/均匀 (15)N 富集 CAP-Gly 结构域和 HIV-1 CA 蛋白的 U-(13)C,(15)N-Tyr 富集 C 末端结构域。在 40 kHz MAS 频率下进行的二维 (2D) 和 3D R16(3)(2)-基于 DIPSHIFT 的实验,为 CAP-Gly 和 CTD CA 提供了特定位置的 (1)H-(13)C/(1)H-(15)N 异核偶极耦合常数,报告了这些蛋白质在纳秒至微秒时间尺度上的动态行为。预计在 MAS NMR 光谱学中,快速 MAS 下的 R 对称性偶极再耦合将在蛋白质组装体和有机固体的研究中得到广泛应用。