Suppr超能文献

在 中,连续合成的领头链被核苷酸切除修复打断。

Near-continuously synthesized leading strands in are broken by ribonucleotide excision.

机构信息

Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801

出版信息

Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1251-1260. doi: 10.1073/pnas.1814512116. Epub 2019 Jan 7.

Abstract

In vitro, purified replisomes drive model replication forks to synthesize continuous leading strands, even without ligase, supporting the semidiscontinuous model of DNA replication. However, nascent replication intermediates isolated from ligase-deficient comprise only short (on average 1.2-kb) Okazaki fragments. It was long suspected that cells replicate their chromosomal DNA by the semidiscontinuous mode observed in vitro but that, in vivo, the nascent leading strand was artifactually fragmented postsynthesis by excision repair. Here, using high-resolution separation of pulse-labeled replication intermediates coupled with strand-specific hybridization, we show that excision-proficient generates leading-strand intermediates >10-fold longer than lagging-strand Okazaki fragments. Inactivation of DNA-repair activities, including ribonucleotide excision, further increased nascent leading-strand size to ∼80 kb, while lagging-strand Okazaki fragments remained unaffected. We conclude that in vivo, repriming occurs ∼70× less frequently on the leading versus lagging strands, and that DNA replication in is effectively semidiscontinuous.

摘要

在体外,纯化的复制体驱动模型复制叉合成连续的前导链,即使没有连接酶,也支持 DNA 复制的半不连续模型。然而,从缺乏连接酶的细胞中分离出的新生复制中间体仅包含短的(平均 1.2kb)冈崎片段。长期以来,人们一直怀疑细胞通过体外观察到的半不连续模式复制其染色体 DNA,但在体内,新生的前导链在合成后通过切除修复被人为地碎片化。在这里,我们使用脉冲标记的复制中间体的高分辨率分离与链特异性杂交相结合,表明具有切除修复能力的 产生的前导链中间体比滞后链冈崎片段长 10 倍以上。DNA 修复活性(包括核苷酸切除)的失活进一步将新生前导链的大小增加到约 80kb,而滞后链冈崎片段不受影响。我们得出结论,在体内,引发在先导链上的发生频率比滞后链低约 70 倍,并且 在 中 DNA 复制实际上是半不连续的。

相似文献

1

引用本文的文献

4
Generation and Repair of Postreplication Gaps in Escherichia coli.大肠杆菌复制后缺口的产生和修复。
Microbiol Mol Biol Rev. 2023 Jun 28;87(2):e0007822. doi: 10.1128/mmbr.00078-22. Epub 2023 May 22.
6
Enzymatic Supercoiling of Bacterial Chromosomes Facilitates Genome Manipulation.细菌染色体的酶促超螺旋化促进基因组操作。
ACS Synth Biol. 2022 Sep 16;11(9):3088-3099. doi: 10.1021/acssynbio.2c00353. Epub 2022 Aug 23.
7
The Impact of RNA-DNA Hybrids on Genome Integrity in Bacteria.RNA-DNA 杂交对细菌基因组完整性的影响。
Annu Rev Microbiol. 2022 Sep 8;76:461-480. doi: 10.1146/annurev-micro-102521-014450. Epub 2022 Jun 2.

本文引用的文献

1
Lesion Bypass and the Reactivation of Stalled Replication Forks.损伤旁路与停滞复制叉的再激活。
Annu Rev Biochem. 2018 Jun 20;87:217-238. doi: 10.1146/annurev-biochem-062917-011921. Epub 2018 Jan 3.
7
Ribonucleotides in DNA: origins, repair and consequences.DNA中的核糖核苷酸:起源、修复及后果
DNA Repair (Amst). 2014 Jul;19:27-37. doi: 10.1016/j.dnarep.2014.03.029. Epub 2014 Apr 30.
8
The precarious prokaryotic chromosome.易变的原核染色体。
J Bacteriol. 2014 May;196(10):1793-806. doi: 10.1128/JB.00022-14. Epub 2014 Mar 14.
9
Dynamics of leading-strand lesion skipping by the replisome.复制体引发的领头链损伤跳跃的动力学。
Mol Cell. 2013 Dec 26;52(6):855-65. doi: 10.1016/j.molcel.2013.10.020. Epub 2013 Nov 21.
10
Cost of rNTP/dNTP pool imbalance at the replication fork.复制叉处 rNTP/dNTP 池失衡的代价。
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12942-7. doi: 10.1073/pnas.1309506110. Epub 2013 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验