Suppr超能文献

用于整合多组学数据分析的切片逆回归

Sliced inverse regression for integrative multi-omics data analysis.

作者信息

Jain Yashita, Ding Shanshan, Qiu Jing

机构信息

Center for Bioinformatics and Computational Biology, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA.

Department of Applied Economics and Statistics, University of Delaware, 531 S College Ave., Newark, DE 19711, USA.

出版信息

Stat Appl Genet Mol Biol. 2019 Jan 26;18(1):/j/sagmb.2019.18.issue-1/sagmb-2018-0028/sagmb-2018-0028.xml. doi: 10.1515/sagmb-2018-0028.

Abstract

Advancement in next-generation sequencing, transcriptomics, proteomics and other high-throughput technologies has enabled simultaneous measurement of multiple types of genomic data for cancer samples. These data together may reveal new biological insights as compared to analyzing one single genome type data. This study proposes a novel use of supervised dimension reduction method, called sliced inverse regression, to multi-omics data analysis to improve prediction over a single data type analysis. The study further proposes an integrative sliced inverse regression method (integrative SIR) for simultaneous analysis of multiple omics data types of cancer samples, including MiRNA, MRNA and proteomics, to achieve integrative dimension reduction and to further improve prediction performance. Numerical results show that integrative analysis of multi-omics data is beneficial as compared to single data source analysis, and more importantly, that supervised dimension reduction methods possess advantages in integrative data analysis in terms of classification and prediction as compared to unsupervised dimension reduction methods.

摘要

下一代测序、转录组学、蛋白质组学和其他高通量技术的进步,使得能够同时测量癌症样本的多种类型基因组数据。与分析单一类型的基因组数据相比,这些数据共同揭示了新的生物学见解。本研究提出了一种监督降维方法——切片逆回归在多组学数据分析中的新应用,以改善单一数据类型分析的预测效果。该研究进一步提出了一种整合切片逆回归方法(integrative SIR),用于同时分析癌症样本的多种组学数据类型,包括miRNA、mRNA和蛋白质组学,以实现整合降维并进一步提高预测性能。数值结果表明,与单一数据源分析相比,多组学数据的整合分析是有益的,更重要的是,与无监督降维方法相比,监督降维方法在整合数据分析的分类和预测方面具有优势。

相似文献

1
Sliced inverse regression for integrative multi-omics data analysis.
Stat Appl Genet Mol Biol. 2019 Jan 26;18(1):/j/sagmb.2019.18.issue-1/sagmb-2018-0028/sagmb-2018-0028.xml. doi: 10.1515/sagmb-2018-0028.
2
Dimension reduction techniques for the integrative analysis of multi-omics data.
Brief Bioinform. 2016 Jul;17(4):628-41. doi: 10.1093/bib/bbv108. Epub 2016 Mar 11.
5
Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
Methods. 2017 Jul 15;124:100-107. doi: 10.1016/j.ymeth.2017.06.010. Epub 2017 Jun 13.
6
Integrative Exploratory Analysis of Two or More Genomic Datasets.
Methods Mol Biol. 2016;1418:19-38. doi: 10.1007/978-1-4939-3578-9_2.
7
Improving prediction performance of colon cancer prognosis based on the integration of clinical and multi-omics data.
BMC Med Inform Decis Mak. 2020 Feb 7;20(1):22. doi: 10.1186/s12911-020-1043-1.
8
iODA: An integrated tool for analysis of cancer pathway consistency from heterogeneous multi-omics data.
J Biomed Inform. 2020 Dec;112:103605. doi: 10.1016/j.jbi.2020.103605. Epub 2020 Oct 20.
10
Digitizing omics profiles by divergence from a baseline.
Proc Natl Acad Sci U S A. 2018 May 1;115(18):4545-4552. doi: 10.1073/pnas.1721628115. Epub 2018 Apr 16.

引用本文的文献

1
Block Forests: random forests for blocks of clinical and omics covariate data.
BMC Bioinformatics. 2019 Jun 27;20(1):358. doi: 10.1186/s12859-019-2942-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验