文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于整合多组学数据分析的切片逆回归

Sliced inverse regression for integrative multi-omics data analysis.

作者信息

Jain Yashita, Ding Shanshan, Qiu Jing

机构信息

Center for Bioinformatics and Computational Biology, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA.

Department of Applied Economics and Statistics, University of Delaware, 531 S College Ave., Newark, DE 19711, USA.

出版信息

Stat Appl Genet Mol Biol. 2019 Jan 26;18(1):/j/sagmb.2019.18.issue-1/sagmb-2018-0028/sagmb-2018-0028.xml. doi: 10.1515/sagmb-2018-0028.


DOI:10.1515/sagmb-2018-0028
PMID:30685747
Abstract

Advancement in next-generation sequencing, transcriptomics, proteomics and other high-throughput technologies has enabled simultaneous measurement of multiple types of genomic data for cancer samples. These data together may reveal new biological insights as compared to analyzing one single genome type data. This study proposes a novel use of supervised dimension reduction method, called sliced inverse regression, to multi-omics data analysis to improve prediction over a single data type analysis. The study further proposes an integrative sliced inverse regression method (integrative SIR) for simultaneous analysis of multiple omics data types of cancer samples, including MiRNA, MRNA and proteomics, to achieve integrative dimension reduction and to further improve prediction performance. Numerical results show that integrative analysis of multi-omics data is beneficial as compared to single data source analysis, and more importantly, that supervised dimension reduction methods possess advantages in integrative data analysis in terms of classification and prediction as compared to unsupervised dimension reduction methods.

摘要

下一代测序、转录组学、蛋白质组学和其他高通量技术的进步,使得能够同时测量癌症样本的多种类型基因组数据。与分析单一类型的基因组数据相比,这些数据共同揭示了新的生物学见解。本研究提出了一种监督降维方法——切片逆回归在多组学数据分析中的新应用,以改善单一数据类型分析的预测效果。该研究进一步提出了一种整合切片逆回归方法(integrative SIR),用于同时分析癌症样本的多种组学数据类型,包括miRNA、mRNA和蛋白质组学,以实现整合降维并进一步提高预测性能。数值结果表明,与单一数据源分析相比,多组学数据的整合分析是有益的,更重要的是,与无监督降维方法相比,监督降维方法在整合数据分析的分类和预测方面具有优势。

相似文献

[1]
Sliced inverse regression for integrative multi-omics data analysis.

Stat Appl Genet Mol Biol. 2019-1-26

[2]
Dimension reduction techniques for the integrative analysis of multi-omics data.

Brief Bioinform. 2016-7

[3]
A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification.

Gigascience. 2019-5-1

[4]
Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification.

BMC Genomics. 2015-12-1

[5]
Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.

Methods. 2017-7-15

[6]
Integrative Exploratory Analysis of Two or More Genomic Datasets.

Methods Mol Biol. 2016

[7]
Improving prediction performance of colon cancer prognosis based on the integration of clinical and multi-omics data.

BMC Med Inform Decis Mak. 2020-2-7

[8]
iODA: An integrated tool for analysis of cancer pathway consistency from heterogeneous multi-omics data.

J Biomed Inform. 2020-12

[9]
Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data.

BMC Med Genomics. 2018-9-14

[10]
Digitizing omics profiles by divergence from a baseline.

Proc Natl Acad Sci U S A. 2018-4-16

引用本文的文献

[1]
Block Forests: random forests for blocks of clinical and omics covariate data.

BMC Bioinformatics. 2019-6-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索