Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulome, Stanford University School of Medicine, Stanford, CA 94305, USA.
Department of Statistics and Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Personal Dynamic Regulome, Stanford University School of Medicine, Stanford, CA 94305, USA; CEMS, NCMIS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100080, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
Cell Stem Cell. 2019 Feb 7;24(2):271-284.e8. doi: 10.1016/j.stem.2018.12.012. Epub 2019 Jan 24.
Tissue development results from lineage-specific transcription factors (TFs) programming a dynamic chromatin landscape through progressive cell fate transitions. Here, we define epigenomic landscape during epidermal differentiation of human pluripotent stem cells (PSCs) and create inference networks that integrate gene expression, chromatin accessibility, and TF binding to define regulatory mechanisms during keratinocyte specification. We found two critical chromatin networks during surface ectoderm initiation and keratinocyte maturation, which are driven by TFAP2C and p63, respectively. Consistently, TFAP2C, but not p63, is sufficient to initiate surface ectoderm differentiation, and TFAP2C-initiated progenitor cells are capable of maturing into functional keratinocytes. Mechanistically, TFAP2C primes the surface ectoderm chromatin landscape and induces p63 expression and binding sites, thus allowing maturation factor p63 to positively autoregulate its own expression and close a subset of the TFAP2C-initiated surface ectoderm program. Our work provides a general framework to infer TF networks controlling chromatin transitions that will facilitate future regenerative medicine advances.
组织发育源于谱系特异性转录因子(TFs)通过逐步的细胞命运转变来编程动态染色质景观。在这里,我们定义了人类多能干细胞(PSCs)表皮分化过程中的表观基因组景观,并创建了推断网络,将基因表达、染色质可及性和 TF 结合整合在一起,以定义角质细胞特化过程中的调控机制。我们发现了两个在表皮外胚层起始和角质细胞成熟过程中关键的染色质网络,它们分别由 TFAP2C 和 p63 驱动。一致地,TFAP2C 足以启动表皮外胚层分化,而由 TFAP2C 启动的祖细胞能够成熟为功能性角质细胞。从机制上讲,TFAP2C 启动表皮外胚层染色质景观,并诱导 p63 的表达和结合位点,从而使成熟因子 p63 能够正向自身调节其表达,并关闭 TFAP2C 启动的表皮外胚层程序的一部分。我们的工作提供了一个推断控制染色质转变的 TF 网络的一般框架,这将有助于未来再生医学的进展。