Abdelkader Ahmed, Bajaj Chandrajit L, Ebeida Mohamed S, Mahmoud Ahmed H, Mitchell Scott A, Rushdi Ahmad A, Owens John D
Dept. of Computer Science, University of Maryland, College Park.
Dept. of Computer Science, University of Texas, Austin.
Lebniz Int Proc Inform. 2018 Jun;99. doi: 10.4230/LIPIcs.SoCG.2018.1.
We study the problem of decomposing a volume with a smooth boundary into a collection of Voronoi cells. Unlike the dual problem of conforming Delaunay meshing, a principled solution to this problem for generic smooth surfaces remained elusive. VoroCrust leverages ideas from weighted -shapes and the power crust algorithm to produce unweighted Voronoi cells conforming to the surface, yielding the first provably-correct algorithm for this problem. Given a -sparse -sample, we work with the balls of radius times the local feature size centered at each sample. The corners of the union of these balls on both sides of the surface are the Voronoi sites and the interface of their cells is a watertight surface reconstruction embedded in the dual shape of the union of balls. With the surface protected, the enclosed volume can be further decomposed by generating more sites inside it. Compared to clipping-based algorithms, VoroCrust cells are full Voronoi cells, with convexity and fatness guarantees. Compared to the power crust algorithm, VoroCrust cells are not filtered, are unweighted, and offer greater flexibility in meshing the enclosed volume by either structured or randomly genenerated samples.
我们研究将具有光滑边界的体积分解为一组Voronoi单元的问题。与符合Delaunay网格划分的对偶问题不同,对于一般光滑曲面,该问题的一个有原则的解决方案仍然难以捉摸。VoroCrust利用加权形状和幂包算法的思想来生成符合曲面的无加权Voronoi单元,从而产生了针对该问题的首个可证明正确的算法。给定一个 - 稀疏样本,我们处理以每个样本为中心、半径为局部特征尺寸 倍的球。这些球在曲面两侧的并集的角点就是Voronoi位点,其单元的界面是嵌入在球并集的对偶形状中的一个水密曲面重建。在保护曲面的情况下,可以通过在其内部生成更多位点来进一步分解封闭体积。与基于裁剪的算法相比,VoroCrust单元是完整的Voronoi单元,具有凸性和饱满度保证。与幂包算法相比,VoroCrust单元不经过过滤、无加权,并且在通过结构化或随机生成的样本对封闭体积进行网格划分时具有更大的灵活性。