Carlsson Erik, Carlsson John
Department of Mathematics, UC Davis, 1 Shields Ave, Davis, CA, 95618, USA.
Department of Industrial Engineering, University of Southern California, Los Angeles, USA.
Sci Rep. 2024 Aug 27;14(1):19824. doi: 10.1038/s41598-024-63971-3.
The alpha complex is a fundamental data structure from computational geometry, which encodes the topological type of a union of balls for , including a weighted version that allows for varying radii. It consists of the collection of "simplices" , which correspond to nonempty -fold intersections of cells in a radius-restricted version of the Voronoi diagram . Existing algorithms for computing the alpha complex require that the points reside in low dimension because they begin by computing the entire Delaunay complex, which rapidly becomes intractable, even when the alpha complex is of a reasonable size. This paper presents a method for computing the alpha complex without computing the full Delaunay triangulation by applying Lagrangian duality, specifically an algorithm based on dual quadratic programming that seeks to rule simplices out rather than ruling them in.
α 复合体是计算几何中的一种基本数据结构,它对 (d) 维空间中球的并集的拓扑类型进行编码,包括一个允许半径变化的加权版本。它由 “单纯形” 的集合 (\mathcal{A}) 组成,这些单纯形对应于半径受限的 Voronoi 图中单元的非空 (d) 重交集。现有的计算 α 复合体的算法要求点位于低维空间,因为它们首先要计算整个 Delaunay 复合体,即使 α 复合体的规模合理,这也会迅速变得难以处理。本文提出了一种通过应用拉格朗日对偶性来计算 α 复合体的方法,具体是一种基于对偶二次规划的算法,该算法试图排除单纯形而不是将它们纳入。