Suppr超能文献

基于大规模队列数据的具有成本效益的疾病预防设计策略:强心研究

Large Cohort Data Based Cost-Effective Disease Prevention Design Strategy: Strong Heart Study.

作者信息

Wang Wenyu, Lee Elisa T, Howard Barbara V, Devereux Richard, Zhang Ying, Stoner Julie A

机构信息

Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

MedStar Research Institute, Washington DC, USA.

出版信息

World J Cardiovasc Dis. 2018 Dec;8(12):588-601. doi: 10.4236/wjcd.2018.812058. Epub 2018 Dec 29.

Abstract

BACKGROUND AND OBJECTIVE

A multitude of large cohort studies have collected data on incidence and covariates/risk factors of various chronic diseases. However, approaches for utilization of these large data and translation of the valuable results to inform and guide clinical disease prevention practice are not well developed. In this paper, we proposed, based on large cohort study data, a novel conceptual cost-effective disease prevention design strategy for a target group when it is not affordable to include everyone in the target group for intervention.

METHODS AND RESULTS

Data from American Indian participants (n = 3516; 2056 women) aged 45 - 74 years in the Strong Heart Study, the diabetes risk prediction model from the study, a utility function, and regression models were used. A conceptual cost-effective disease prevention design strategy based on large cohort data was initiated. The application of the proposed strategy for diabetes prevention was illustrated.

DISCUSSION

The strategy may provide reasonable solutions to address cost-effective prevention design issues. These issues include complex associations of a disease with its significant risk factors, cost-effectively selecting individuals at high risk of developing disease to undergo intervention, individual differences in health conditions, choosing intervention risk factors and setting their appropriate, attainable, gradual and adaptive goal levels for different subgroups, and assessing effectiveness of the prevention program.

CONCLUSIONS

The strategy and methods shown in the illustrative example can also be analogously adopted and applied to other diseases preventions. The proposed strategy provides a way to translate and apply epidemiological study results to clinical disease prevention practice.

摘要

背景与目的

众多大型队列研究收集了各种慢性病的发病率及协变量/风险因素的数据。然而,利用这些大数据并将有价值的结果转化以指导临床疾病预防实践的方法尚未得到充分发展。在本文中,基于大型队列研究数据,我们针对目标群体提出了一种新颖的具有成本效益的疾病预防设计策略,前提是将目标群体中的每个人都纳入干预措施的成本过高。

方法与结果

使用了来自强心研究中45 - 74岁的美国印第安参与者(n = 3516;2056名女性)的数据、该研究中的糖尿病风险预测模型、一个效用函数以及回归模型。启动了一种基于大型队列数据的具有成本效益的疾病预防设计策略,并举例说明了该策略在糖尿病预防中的应用。

讨论

该策略可能为解决具有成本效益的预防设计问题提供合理的解决方案。这些问题包括疾病与其重要风险因素的复杂关联、以具有成本效益的方式选择疾病高风险个体进行干预、个体健康状况差异、选择干预风险因素并为不同亚组设定适当、可实现、逐步且适应性的目标水平,以及评估预防计划的有效性。

结论

示例中所示的策略和方法也可类似地应用于其他疾病的预防。所提出的策略提供了一种将流行病学研究结果转化并应用于临床疾病预防实践的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a8d/6343848/d14b2261e9b1/nihms-1004267-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验