Suppr超能文献

通过二炔单体与格拉布型催化剂的环化聚合反应合成功能性聚乙炔。

Synthesis of Functional Polyacetylenes via Cyclopolymerization of Diyne Monomers with Grubbs-type Catalysts.

作者信息

Peterson Gregory I, Yang Sanghee, Choi Tae-Lim

机构信息

Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea.

出版信息

Acc Chem Res. 2019 Apr 16;52(4):994-1005. doi: 10.1021/acs.accounts.8b00594. Epub 2019 Jan 28.

Abstract

Metathesis cyclopolymerization (CP) of α,ω-diynes is a powerful method to prepare functional polyacetylenes (PAs). PAs have long been studied due to their interesting electrical, optical, photonic, and magnetic properties which make them candidates for use in various advanced applications. Grubbs catalysts are widely used throughout synthetic chemistry, largely due to their accessibility, high reactivity, and tolerance to air, moisture, and many functional groups. Prior to our entrance into this field, only a few examples of CP using modified Grubbs catalysts existed. Inspired by these works, we saw an opportunity to expand the accessibility and utility of Grubbs-catalyzed CPs. We began by exploring CP with popular and commercially available Grubbs catalysts. We found Grubbs third-generation catalyst (G3) to be an excellent catalyst when we used strategies to stabilize the propagating Ru carbene, such as decreasing the polymerization temperature or using weakly coordinating solvent or ligands. Controlled living polymerizations were demonstrated using various 1,6-heptadiyne monomers and yielded polymers with exclusively 5-membered rings (via α-addition) in the polymer backbone. The strategy of stabilizing the Ru carbene was also critical to successful CP with Hoveyda-Grubbs second-generation (HG2) and Grubbs first-generation (G1) catalysts. We found that decomposed Ru species were catalyzing side reactions which could be completely shut down by decreasing the reaction temperature or using weakly coordinating ligands. While HG2 generally led to uncontrolled polymerizations, we found it to be an effective catalyst for monomers with very large side chains. G1 displayed broader functional group tolerance and thus broader monomer scope than G3. We next looked at our ability to change the regioselectivity of the polymerization by using Z-selective catalysts which favor β-addition and the formation of 6-membered rings in the polymer backbone. While modest β-selectivity could be obtained using Grubbs Z-selective catalyst at low temperatures, we found that by using one of Hoveyda and co-workers' catalysts with decreased carbene electrophilicity, we could achieve exclusive formation of 6-membered rings. We also pursued alternative routes to achieve 6+-membered rings in the polymer backbone by using diyne monomers with increased distance between alkynes. We found that optimizing the monomer structure for CP was an effective strategy to achieve controlled polymerizations. By using bulky substituents (maximizing the Thorpe-Ingold effect) and/or using heteroatoms (shorter bonds) to bring the alkynes closer together, controlled living CP could be achieved with various 1,7-octadiyne and 1,8-nonadiyne monomers. Finally, we took advantage of several inherent properties of controlled CP techniques to prepare polymers with advanced architectures and nanostructures. For instance, the living nature of the polymerization enabled production of block copolymers, the tolerance of very large substituents enabled production of dendronized and brush polymers, and the insolubility or crystallinity of some monomers was utilized for the spontaneous self-assembly of polymers into various one- and two-dimensional nanostructures. Overall, the strategies of stabilizing the propagating Ru carbene, modulating the selectivity and reactivity of the Ru carbene, and enhancing the inherent reactivity of monomers were key to improving the utility and performance of CP with Grubbs-type catalysts. The insight provided by these studies will be important for future developments of CP and other metathesis polymerizations utilizing ring-closing steps.

摘要

α,ω-二炔的复分解环聚合反应(CP)是制备功能化聚乙炔(PA)的一种有效方法。由于聚乙炔具有有趣的电学、光学、光子学和磁学性质,使其成为各种先进应用的候选材料,因此长期以来一直受到研究。格拉布催化剂在整个合成化学中被广泛使用,这主要归功于它们的易获得性、高反应活性以及对空气、水分和许多官能团的耐受性。在我们进入这个领域之前,使用改性格拉布催化剂进行CP反应的例子很少。受这些工作的启发,我们看到了扩大格拉布催化CP反应的可及性和实用性的机会。我们首先用常见的市售格拉布催化剂探索CP反应。当我们采用稳定增长的钌卡宾的策略时,例如降低聚合温度、使用弱配位溶剂或配体,我们发现格拉布第三代催化剂(G3)是一种优异的催化剂。使用各种1,6-庚二炔单体进行了可控活性聚合反应,得到了聚合物主链中仅含五元环(通过α-加成)的聚合物。稳定钌卡宾的策略对于使用霍维达-格拉布第二代(HG2)和格拉布第一代(G1)催化剂成功进行CP反应也至关重要。我们发现分解的钌物种催化副反应,通过降低反应温度或使用弱配位配体可以完全抑制这些副反应。虽然HG2通常导致不可控的聚合反应,但我们发现它对于带有非常大侧链的单体是一种有效的催化剂。G1比G3表现出更广泛的官能团耐受性,因此单体范围更广。接下来,我们研究了使用有利于β-加成并在聚合物主链中形成六元环的Z-选择性催化剂来改变聚合区域选择性的能力。虽然在低温下使用格拉布Z-选择性催化剂可以获得适度的β-选择性,但我们发现通过使用霍维达及其同事开发的卡宾亲电性降低的催化剂之一,可以实现六元环的专一形成。我们还通过使用炔烃之间距离增加的二炔单体,探索了在聚合物主链中形成6元以上环的替代途径。我们发现优化用于CP反应的单体结构是实现可控聚合反应的有效策略。通过使用庞大的取代基(最大化索普-英戈尔德效应)和/或使用杂原子(较短的键)使炔烃更靠近,使用各种1,7-辛二炔和1,8-壬二炔单体可以实现可控活性CP反应。最后,我们利用可控CP技术的几个固有特性来制备具有先进结构和纳米结构的聚合物。例如,聚合反应的活性性质使得能够制备嵌段共聚物,对非常大的取代基的耐受性使得能够制备树枝状和刷状聚合物,并且一些单体的不溶性或结晶性被用于聚合物自发自组装成各种一维和二维纳米结构。总体而言,稳定增长的钌卡宾、调节钌卡宾的选择性和反应活性以及提高单体的固有反应活性的策略是提高使用格拉布型催化剂的CP反应的实用性和性能的关键。这些研究提供的见解对于CP反应和其他利用闭环步骤的复分解聚合反应的未来发展将是重要的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验