Smith Matthew D, Connor Bridget A, Karunadasa Hemamala I
Department of Chemistry , Stanford University , Stanford , California 94305 , United States.
Chem Rev. 2019 Mar 13;119(5):3104-3139. doi: 10.1021/acs.chemrev.8b00477. Epub 2019 Jan 28.
Layered halide perovskites offer a versatile platform for manipulating light through synthetic design. Although most layered perovskites absorb strongly in the ultraviolet (UV) or near-UV region, their emission can range from the UV to the infrared region of the electromagnetic spectrum. This emission can be very narrow, displaying high color purity, or it can be extremely broad, spanning the entire visible spectrum and providing high color rendition (or accurately reproducing illuminated colors). The origin of the photoluminescence can vary enormously. Strongly correlated electron-hole pairs, permanent lattice defects, transient light-induced defects, and ligand-field transitions in the inorganic layers and molecular chromophores in the organic layers can be involved in the emission mechanism. In this review, we highlight the different types of photoluminescence that may be attained from layered halide perovskites, with an emphasis on how the emission may be systematically tuned through changes to the bulk crystalline lattice: changes in composition, structure, and dimensionality.
层状卤化物钙钛矿为通过合成设计来操控光提供了一个多功能平台。尽管大多数层状钙钛矿在紫外(UV)或近紫外区域有强烈吸收,但其发射光谱可涵盖从紫外到电磁光谱的红外区域。这种发射光谱可以非常窄,显示出高色纯度,也可以极其宽,跨越整个可见光谱并提供高显色性(或准确再现被照亮的颜色)。光致发光的起源可能差异极大。强关联的电子 - 空穴对、永久性晶格缺陷、瞬态光致缺陷以及无机层中的配体场跃迁和有机层中的分子发色团都可能参与发射机制。在本综述中,我们重点介绍了层状卤化物钙钛矿可能实现的不同类型的光致发光,重点在于如何通过改变体晶格来系统地调节发射:组成、结构和维度的变化。