School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , P.R. China.
Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , 789 South Limestone Street , Lexington , Kentucky 40536 , United States.
J Med Chem. 2019 Feb 28;62(4):2099-2111. doi: 10.1021/acs.jmedchem.8b01763. Epub 2019 Feb 12.
Accurate prediction of absolute protein-ligand binding free energy could considerably enhance the success rate of structure-based drug design but is extremely challenging and time-consuming. Free energy perturbation (FEP) has been proven reliable but is limited to prediction of relative binding free energies of similar ligands (with only minor structural differences) in binding with a same drug target in practical drug design applications. Herein, a Gaussian algorithm-enhanced FEP (GA-FEP) protocol has been developed to enhance the FEP simulation performance, enabling to efficiently carry out the FEP simulations on vanishing the whole ligand and, thus, predict the absolute binding free energies (ABFEs). Using the GA-FEP protocol, the FEP simulations for the ABFE calculation (denoted as GA-FEP/ABFE) can achieve a satisfactory accuracy for both structurally similar and diverse ligands in a dataset of more than 100 receptor-ligand systems. Further, our GA-FEP/ABFE-guided lead optimization against phosphodiesterase-10 led to the discovery of a subnanomolar inhibitor (IC = 0.87 nM, ∼2000-fold improvement in potency) with cocrystal confirmation.
准确预测绝对蛋白质-配体结合自由能可以极大地提高基于结构的药物设计的成功率,但这极具挑战性并且非常耗时。自由能微扰(FEP)已被证明是可靠的,但在实际药物设计应用中,仅限于预测具有相似结构差异的配体(与同一药物靶标结合)的相对结合自由能。在此,开发了一种高斯算法增强的 FEP(GA-FEP)方案来增强 FEP 模拟性能,从而能够有效地对整个配体进行 FEP 模拟,从而预测绝对结合自由能(ABFE)。使用 GA-FEP 方案,对于 ABFE 计算的 FEP 模拟(表示为 GA-FEP/ABFE),在超过 100 个受体-配体系统的数据集内,对于结构相似和多样化的配体都能达到令人满意的准确性。此外,我们针对磷酸二酯酶-10 的 GA-FEP/ABFE 指导的先导优化导致发现了一种亚纳摩尔抑制剂(IC = 0.87 nM,效力提高了约 2000 倍),并用共晶结构确认。
Methods Mol Biol. 2019
Acc Chem Res. 2017-7-5
J Chem Theory Comput. 2020-11-10
J Chem Inf Model. 2017-12-15
Acta Pharm Sin B. 2022-3
Int J High Perform Comput Appl. 2023-1
Res Pharm Sci. 2022-12-24