文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过抑制磷酸二酯酶9筛选抗糖尿病的次生代谢产物

screening of secondary metabolites as anti-diabetes mellitus through PDE9 inhibition.

作者信息

Ischak Netty Ino, Aman La Ode, Hasan Hamsidar, Kilo Akram La, Asnawi Aiyi

机构信息

Chemistry Department, Universitas Negeri Gorontalo, Gorontalo, Indonesia.

Pharmacy Department, Universitas Negeri Gorontalo, Gorontalo, Indonesia.

出版信息

Res Pharm Sci. 2022 Dec 24;18(1):100-111. doi: 10.4103/1735-5362.363616. eCollection 2023 Feb.


DOI:10.4103/1735-5362.363616
PMID:36846729
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9951786/
Abstract

BACKGROUND AND PURPOSE: (AP) has long been used as an anti-diabetic agent, but the mechanism of action and active substance responsible for the anti-diabetic effect, particularly by inhibiting phosphodiesterase-9 (PDE9), which is one of the targets of anti-diabetic medications, have not been reported. The aim of the present study was to identify a new anti-diabetes candidate from secondary metabolite compounds of AP through PDE9 inhibition. EXPERIMENTAL APPROACH: In order to prepare the chemical structures of the secondary metabolites of AP and PDE9, docking and molecular dynamics simulations were run using Discovery Studio Visualizer, AutoDockTools, AutoDock, and Gromacs, along with a few other supporting software packages. FINDINGS/RESULTS: Molecular docking simulations showed that two of the 46 secondary metabolites of AP had higher free energies of binding, C00003672 (-11.35 kcal/mol) and C00041378 (-9.27 kcal/mol), than native ligand (-9.23 kcal/mol). The results of molecular dynamics showed that compound C00041378 interacted with TRY484 and PHE516, two active side residues of PDE9. ΔGMMGBSA interactions of PDE9 with C00003672, C00041378, and 49E compounds are 51.69, -56.43, and -48.13 kcal/mol, respectively, as well as ΔGMMPBSA interactions of PDE9 with C00003672, C00041378, and 49E compounds, were -12.26, -16.24, and -11.79 kcal/mol kcal/mol, respectively. CONCLUSIONS AND IMPLICATIONS: Based on the evaluations of AP secondary metabolites using docking and molecular dynamics simulation, it is suggested that the C00041378 compound has the potential to be an antidiabetic candidate by inhibiting PDE9.

摘要

背景与目的:穿心莲内酯(AP)长期以来一直被用作抗糖尿病药物,但其作用机制以及负责抗糖尿病作用的活性物质,特别是通过抑制磷酸二酯酶-9(PDE9),尚未见报道,而PDE9是抗糖尿病药物的靶点之一。本研究的目的是通过抑制PDE9,从穿心莲内酯的次生代谢产物化合物中鉴定一种新的抗糖尿病候选物。 实验方法:为了制备穿心莲内酯和PDE9的次生代谢产物的化学结构,使用Discovery Studio Visualizer、AutoDockTools、AutoDock和Gromacs以及其他一些支持软件包进行对接和分子动力学模拟。 研究结果:分子对接模拟显示,穿心莲内酯46种次生代谢产物中的两种具有比天然配体(-9.23 kcal/mol)更高的结合自由能,分别为C00003672(-11.35 kcal/mol)和C00041378(-9.27 kcal/mol)。分子动力学结果表明,化合物C00041378与PDE9的两个活性侧链残基TRY484和PHE516相互作用。PDE9与C00003672、C00041378和49E化合物的ΔGMMGBSA相互作用分别为51.69、-56.43和-48.13 kcal/mol,PDE9与C00003672、C00041378和49E化合物的ΔGMMPBSA相互作用分别为-12.26、-16.2

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/e3e3357a03a3/RPS-18-100-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/6c9c8496ee50/RPS-18-100-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/b3d11df54b60/RPS-18-100-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/72c59b65b34f/RPS-18-100-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/a2f57cc79a42/RPS-18-100-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/481249f04304/RPS-18-100-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/a691d511d21b/RPS-18-100-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/e3e3357a03a3/RPS-18-100-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/6c9c8496ee50/RPS-18-100-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/b3d11df54b60/RPS-18-100-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/72c59b65b34f/RPS-18-100-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/a2f57cc79a42/RPS-18-100-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/481249f04304/RPS-18-100-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/a691d511d21b/RPS-18-100-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15d3/9951786/e3e3357a03a3/RPS-18-100-g007.jpg

相似文献

[1]
screening of secondary metabolites as anti-diabetes mellitus through PDE9 inhibition.

Res Pharm Sci. 2022-12-24

[2]
In Silico Insights on the Pro-Inflammatory Potential of Polycyclic Aromatic Hydrocarbons and the Prospective Anti-Inflammatory Capacity of Phytocompounds.

Int J Environ Res Public Health. 2022-7-14

[3]
In silico molecular docking study of phytochemicals against TNF-α as a potent anti-rheumatoid drug.

J Biomol Struct Dyn. 2023-4

[4]
Identification and characterization of new potent inhibitors of dengue virus NS5 proteinase from Andrographis paniculata supercritical extracts on in animal cell culture and in silico approaches.

J Ethnopharmacol. 2021-3-1

[5]
Combined ligand-based and structure-based design of PDE 9A inhibitors against Alzheimer's disease.

Mol Divers. 2022-10

[6]
Synthesis, Molecular Docking, Molecular Dynamics Studies, and Biological Evaluation of 4H-Chromone-1,2,3,4-tetrahydropyrimidine-5-carboxylate Derivatives as Potential Antileukemic Agents.

J Chem Inf Model. 2017-5-25

[7]
A network-based analysis of key pharmacological pathways of Andrographis paniculata acting on Alzheimer's disease and experimental validation.

J Ethnopharmacol. 2020-4-6

[8]
Mining ZINC Database to Discover Potential Phosphodiesterase 9 Inhibitors Using Structure-Based Drug Design Approach.

Med Chem. 2016

[9]
Structure-based design, synthesis, and biological evaluation of novel pyrimidinone derivatives as PDE9 inhibitors.

Acta Pharm Sin B. 2018-7

[10]
Analyzing the interaction of a herbal compound Andrographolide from as a folklore against swine flu (H1N1).

Asian Pac J Trop Dis. 2014-9

引用本文的文献

[1]
Multiple ligands simultaneous molecular docking and dynamics approach to study the synergetic inhibitory of curcumin analogs on ErbB4 tyrosine phosphorylation.

Res Pharm Sci. 2024-12-15

本文引用的文献

[1]
gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS.

J Chem Theory Comput. 2021-10-12

[2]
A Perspective on Natural and Nature-Inspired Small Molecules Targeting Phosphodiesterase 9 (PDE9): Chances and Challenges against Neurodegeneration.

Pharmaceuticals (Basel). 2021-1-13

[3]
Validation of Phosphodiesterase-10 as a Novel Target for Pulmonary Arterial Hypertension via Highly Selective and Subnanomolar Inhibitors.

J Med Chem. 2019-3-29

[4]
Absolute Binding Free Energy Calculation and Design of a Subnanomolar Inhibitor of Phosphodiesterase-10.

J Med Chem. 2019-2-12

[5]
AutoDock and AutoDockTools for Protein-Ligand Docking: Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1(BACE1) as a Case Study.

Methods Mol Biol. 2017

[6]
Anti-Diabetic Activity and Metabolic Changes Induced by Andrographis paniculata Plant Extract in Obese Diabetic Rats.

Molecules. 2016-8-9

[7]
Comparative Protein Structure Modeling Using MODELLER.

Curr Protoc Bioinformatics. 2016-6-20

[8]
Natural Products as Sources of New Drugs from 1981 to 2014.

J Nat Prod. 2016-3-25

[9]
Structural Asymmetry of Phosphodiesterase-9A and a Unique Pocket for Selective Binding of a Potent Enantiomeric Inhibitor.

Mol Pharmacol. 2015-11

[10]
Personalized medicine in diabetes mellitus: current opportunities and future prospects.

Ann N Y Acad Sci. 2015-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索