Suppr超能文献

评估终点法预测蛋白激酶抑制剂结合亲和力趋势的能力。

Evaluating the ability of end-point methods to predict the binding affinity tendency of protein kinase inhibitors.

作者信息

Bello Martiniano, Bandala Cindy

机构信息

Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomas Ciudad de México 11340 Mexico

Escuela Superior de Medicina, Instituto Politécnico Nacional México City 11340 Mexico.

出版信息

RSC Adv. 2023 Aug 22;13(36):25118-25128. doi: 10.1039/d3ra04916g. eCollection 2023 Aug 21.

Abstract

Because of the high economic cost of exploring the experimental impact of mutations occurring in kinase proteins, computational approaches have been employed as alternative methods for evaluating the structural and energetic aspects of kinase mutations. Among the main computational methods used to explore the affinity linked to kinase mutations are docking procedures and molecular dynamics (MD) simulations combined with end-point methods or alchemical methods. Although it is known that end-point methods are not able to reproduce experimental binding free energy (Δ) values, it is also true that they are able to discriminate between a better or a worse ligand through the estimation of Δ. In this contribution, we selected ten wild-type and mutant cocrystallized EGFR-inhibitor complexes containing experimental binding affinities to evaluate whether MMGBSA or MMPBSA approaches can predict the differences in affinity between the wild type and mutants forming a complex with a similar inhibitor. Our results show that a long MD simulation (the last 50 ns of a 100 ns-long MD simulation) using the MMGBSA method without considering the entropic components reproduced the experimental affinity tendency with a Pearson correlation coefficient of 0.779 and an value of 0.606. On the other hand, the correlation between theoretical and experimental ΔΔ values indicates that the MMGBSA and MMPBSA methods are helpful for obtaining a good correlation using a short rather than a long simulation period.

摘要

由于探索激酶蛋白中发生的突变的实验影响成本高昂,计算方法已被用作评估激酶突变的结构和能量方面的替代方法。用于探索与激酶突变相关亲和力的主要计算方法包括对接程序以及结合端点方法或炼金术方法的分子动力学(MD)模拟。尽管已知端点方法无法重现实验结合自由能(Δ)值,但它们确实能够通过估计Δ来区分更好或更差的配体。在本论文中,我们选择了十个含有实验结合亲和力的野生型和突变型共结晶EGFR-抑制剂复合物,以评估MMGBSA或MMPBSA方法是否能够预测与相似抑制剂形成复合物的野生型和突变体之间的亲和力差异。我们的结果表明,使用MMGBSA方法进行长时间MD模拟(100 ns长MD模拟的最后50 ns),不考虑熵成分,以0.779的皮尔逊相关系数和0.606的 值重现了实验亲和力趋势。另一方面,理论和实验ΔΔ值之间的相关性表明,MMGBSA和MMPBSA方法有助于在较短而非较长的模拟周期内获得良好的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ef/10443623/eff4e5e370dd/d3ra04916g-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验