Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
Mol Plant. 2019 Mar 4;12(3):321-342. doi: 10.1016/j.molp.2019.01.014. Epub 2019 Jan 26.
As one of the most important crops, maize not only has been a source of the food, feed, and industrial feedstock for biofuel and bioproducts, but also became a model plant system for addressing fundamental questions in genetics. Male sterility is a very useful trait for hybrid vigor utilization and hybrid seed production. The identification and characterization of genic male-sterility (GMS) genes in maize and other plants have deepened our understanding of the molecular mechanisms controlling anther and pollen development, and enabled the development and efficient use of many biotechnology-based male-sterility (BMS) systems for crop hybrid breeding. In this review, we summarize main advances on the identification and characterization of GMS genes in maize, and construct a putative regulatory network controlling maize anther and pollen development by comparative genomic analysis of GMS genes in maize, Arabidopsis, and rice. Furthermore, we discuss and appraise the features of more than a dozen BMS systems for propagating male-sterile lines and producing hybrid seeds in maize and other plants. Finally, we provide our perspectives on the studies of GMS genes and the development of novel BMS systems in maize and other plants. The continuous exploration of GMS genes and BMS systems will enhance our understanding of molecular regulatory networks controlling male fertility and greatly facilitate hybrid vigor utilization in breeding and field production of maize and other crops.
作为最重要的农作物之一,玉米不仅是食物、饲料和生物燃料及生物制品工业原料的来源,而且还成为解决遗传学基本问题的模式植物系统。雄性不育是利用杂种优势和生产杂交种子非常有用的特性。玉米和其他植物中基因雄性不育(GMS)基因的鉴定和特征描述加深了我们对控制花药和花粉发育的分子机制的理解,并使许多基于生物技术的雄性不育(BMS)系统得以开发和有效地用于作物杂交育种。在这篇综述中,我们总结了玉米中 GMS 基因的鉴定和特征描述的主要进展,并通过比较玉米、拟南芥和水稻中 GMS 基因的基因组分析,构建了一个控制玉米花药和花粉发育的假定调控网络。此外,我们还讨论和评价了十多个在玉米和其他植物中传播雄性不育系和生产杂交种子的 BMS 系统的特点。最后,我们对玉米和其他植物中 GMS 基因的研究和新型 BMS 系统的发展提出了看法。对 GMS 基因和 BMS 系统的不断探索将增强我们对控制雄性育性的分子调控网络的理解,并极大地促进玉米和其他作物的杂种优势在育种和田间生产中的利用。